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Dunning, Amber Lynn (Ph.D., Biomedical Engineering)

Properties of Human Motor Control Under Risk and Risk Aware Control

Thesis directed by Dr. Terence Sanger

Recently, a lot of attention has been given to exploring the type of control algorithm

humans implement in movement. A comprehensive theory of motor control is important

for many reasons. It would allow us to compare symptoms of motor diseases to symptoms

resulting from di↵erent interruptions and damages in the model of motor control to gain a

better understanding of the pathophysiology and construct a focus for treatments. A com-

plete understanding of motor control will also influence design of prosthetics and biomimetic

robots. It could also have many implications in learning and may even transform the way

we teach motor actions.

There are several proposed models, which predominantly focus on achieving a goal

through a reference trajectory (Todorov, 2002; Todorov, 2004). However, motor control is

not just about reaching a goal, but also avoiding predictable failure in the process. Risk is

inherent in all activity, and avoidance of risk is fundamental to human survival, so response to

risk must be an integral part of human movement as well. A new theory, Risk-Aware Control,

emphasizes selecting motor actions that minimize risk (Sanger, 2014). Risk-Aware Control

is distinctive from classical theories in that it is an entirely new way of approaching the

relationship between cost and motor actions. It does not attempt to formulate a reference

trajectory to the goal, but instead predicts that movement develops from maintaining a

probability distribution of state, a detailed understanding of the cost function, and knowledge

of the relationship between action and change in state. The result is a control theory that

accounts for incorporation of uncertainty and cost in motor planning and execution, plans for

unexpected error prior to perturbation, and does not require assumptions of system linearity.

The theory of risk-aware control suggests a reduction in computational burden com-
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pared to current full models of human motor control because it allows for parallel computing.

In an existential proof, we implement risk-aware control using a spiking neuron model of cor-

tex to control a robotic arm in real time. Utilizing the framework of Stochastic Dynamic

Operators, we were able to o✏oad the majority of computation to a graphics processing unit

to maintain a high operating rate. We explore the e↵ects of gain and damping parameters

on the control and demonstrate response behavior to perturbations.

Since evasion of risk is fundamental to survival we believe it must be a fundamental

component in human motor control as well. In order to characterize and emphasize the

influence of risk in the environment on human behavior, we have designed a series of exper-

iments. In these studies, we are describing risk as the expected cost of behavior defined by

the combination of cost of failure and probability of failure. The rest of this report details

these experiments.

The role of motor uncertainty in discrete or static space tasks, such as pointing tasks,

has been investigated in many experiments (Tommershauser et al. 2003a; Trommershauser

et al. 2003b). These studies have already shown that humans hold a highly accurate in-

ternal representation of their intrinsic motor uncertainty and compensate accordingly for

this variability. Furthermore, experiments imposing additional extrinsic motor and sen-

sory variability have shown that subjects still respond near optimally, even as risk increases

(Trommershauser et al. 2005). While static conditions provide an important foundation to

understanding the relationship between risk and movement, they rarely appear in natural

situations. The aim of our first study was to investigate how humans respond to uncertainties

in a dynamic environment despite indeterminate knowledge of the outcomes of specific ac-

tions. Our hypothesis was that subjects would tune their statistical behavior to uncertainty

based on cost in a dynamic, feedback-driven task.

In the first experiment, subjects maintained one-dimensional “steering” control of a

vehicle in an iPad driving simulation. The speed of the car was determined solely by position

on a two-lane road. While on the road, driving in a lane yielded the maximum possible
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velocity, driving on the dashed line between lanes caused the vehicle to slow down, and hitting

the grass along the side of the road brought the car to a complete stop. The road contained

random curves so that subjects were forced to use sensory feedback to complete the task and

could not rely only on motor planning. The points earned were inversely proportional to the

time taken to complete each trial. Risk was manipulated by using horizontal perturbations

to create the illusion of driving on a bumpy road, thereby imposing motor uncertainty.

The baseline task contained five levels of uncertainty, including no additional variability. A

subsequent task introduced high risk into the scenario by replacing grass on one or both

sides of the road with water, which if hit would incur a very high penalty.

As expected, results depict position as a bimodal probability density function at low

uncertainty, implying that subjects tended to keep towards the center of a single lane. As

uncertainty increased, the peaks of the bimodal distribution tended toward one another. At

high uncertainty, most subjects’ position distribution exhibited a well-fit Gaussian function,

indicating that they spent most of the time in the center of the road. This phenomenon was

augmented when cost of error increased. Interestingly, this shift in behavior occurred even

in the absence of errors, i.e. even if a subject never hit the side of the road at a particular

uncertainty level (regardless of the cost), behavior was still significantly di↵erent when the

cost increased. This is significant since the common model for learning in motor control is

error-driven learning (Wei and Kording, 2008), and this observation suggests that human

performance is often not driven by errors. The results demonstrate that subjects made

predictions of both the likelihood and cost of failure, even if failure had never occurred, and

are consistent with the existence of internal estimates of probability of failure and cost of

failure.

The first experiment only investigated the role of motor uncertainty on behavior. We

wanted to expand the paradigm of the first study to compare the e↵ect of motor uncertainty

(uncertainty in the control variable) with sensory uncertainty (uncertainty in the state vari-

able). This has the same e↵ect on control in motor control theories, however it is conceivable
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that humans may perceive and interpret these uncertainties di↵erently. The same iPad driv-

ing simulation will be used, but instead of physically slowing the car on the road, the cost

function will be directly implemented by a point penalty. Subjects performed two tasks:

one with the same imposed motor uncertainty used in the first experiment and the other

with imposed sensory uncertainty. In order to implement sensory uncertainty, the contrast

between the road and boundary was varied, and then the image was converted to 2-bit. In

order to achieve this, the grayscale value of each pixel corresponded to a probability of being

white versus black. Instead of contrast being calculated with Michelson’s formula, we trans-

form this into a new equation that uses probability in place of luminance. Simple luminance

contrast would be ine↵ective because the human eye can detect the di↵erence between any

two 8-bit colors, so the edge of the road would always be apparent. We characterized and

validated this method of imposing sensory uncertainty in a previous experiment.

The first set of trials was a calibration phase, in which we matched the standard

deviation of position when attempting to stay on a path under each type of uncertainty

to specific levels. Subjects then completed the task when the cost function was the same

as the first study (a bimodal cost function) and we compared subjects’ behavior under

imposed sensory uncertainty to behavior under imposed motor uncertainty with equivalent

statistics. Results showed that sensitivity to risk was significantly higher in response to

visual uncertainty compared to motor uncertainty. This also allowed us to test whether

human control of movement obeys the certainty equivalence property. A system in which

the optimal solution is the same as the optimal solution for that system in the absence of

uncertainty would be certainty equivalent. Certainty equivalence is the result of discrete-

time centralized systems with only additive uncertainty and is a common assumption in

motor control theories since it decreases computation complexity. However, the results of

these studies demonstrate that this is not an appropriate assumption in models of human

motor control.

From the first set of studies, it is evident that humans tune their statistical behavior
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based on cost, taking into account entire probability distributions of possible outcomes with

long tails in response to environmental uncertainty. In addition to modifying the control of

movement to reflect the risk of the environment, we predict that humans will prepare for

error in response to risk as well. Recent studies have demonstrated that humans have the

ability to modulate the long latency stretch reflex based on the goal of the task, but typically

utilize a simple go-don’t-go paradigm or the goal is perturbation-dependent (Ludvig et al.

2007; Pruszynski et al. 2008). It is our hypothesis that awareness to risk is so fundamental

that humans also maintain reflexes tuned specifically to the cost function of the environment,

even when the goal of the task does not depend on the perturbation.

In the second set of experiments, the role of risk in tuning reflexes was examined. The

first study extended the paradigm of the first study to include random visual displacements

of the car. The accelerometer responses to perturbations increasing risk were compared to

responses decreasing risk. A significant di↵erence was found in the amplitude of response

depending on risk. These perturbations were visual perturbations and therefore we were

interested in seeing if this behavior extended to the stretch reflex as well.

The second two experiments in this series investigated the human stretch reflex response

between risk conditions. In the first, the FDI reflex was studied. Healthy, adult subjects

were positioned in front of a monitor with their right index finger attached to the arm of

a robot that controlled a cursor on the screen. Surface electromyography from the first

dorsal interosseous (FDI) was recorded (sample rate 1000 Hz, bandpass filter 25-250 Hz).

The monitor displayed three rectangles: two cost regions on either side of a center reward

region, which moved horizontally (remaining equidistant) in a randomized sinusoidal motion.

Subjects were instructed to maximize points by keeping the cursor within the center reward

region while avoiding the cost regions that would result in a loss of points. Nine cost

environments were evaluated– all combinations of no penalty, low penalty, and high penalty–

in order to evaluate the e↵ect of both symmetric and asymmetric risk. Thus the goal of the

task was always to remain in the center target, but the cost of hitting the penalty regions
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was varied. The robot generated a constant 1 N force with randomized 4 N perturbations

in both directions (randomized) at a mean rate of 3 seconds.

Only trials in the direction that provoked the FDI stretch reflex were analyzed. Reflex

response was categorized into standard epochs for baseline, short latency, long latency, and

voluntary response. The filtered EMG within each epoch was averaged to a single value for

analysis. Short latency epoch was not significantly di↵erent between cost environments. A

significant di↵erence was found in the long latency epoch between cost functions. There was

not a significant di↵erence between cost functions that pushed toward higher cost versus

away from higher cost. Therefore, results suggest that humans do plan for error by tuning

reflexes to the risk of the environment, and that they do this independent of the goal of the

task. However, subjects did not demonstrate the ability to set separate reflex responses for

di↵erent directions when the direction of perturbation was unplanned. However, the results

of this experiment were not as strong as expected, and we postulated that this might be

attributed to the FDI. Therefore, we repeated the experiment using the bicep muscle.

The final experiment was very similar to the previous paradigm except a manipulandum

was used to perturb the arm by applying torque to the elbow joint. The results from this

study demonstrated more coherency. For the most part, the conclusions from the FDI reflex

were confirmed. There was a significant increase in the long latency stretch reflex in response

to increased risk. In fact, the average amplitude of the long latency stretch reflex between

the symmetric high-cost was almost double that of the symmetric no-cost. Unlike the study

on the FDI reflex, there was also a significant di↵erence between the long latency reflex

response to perturbations pushing toward higher risk compared to lower risk in asymmetric

cost conditions when the cumulative risk was the same. This suggests that muscle sti↵ness

was not the only method of modulating the stretch reflex since co-contraction is inherently

symmetric.

The unifying aspect of these results is that they represent basic characteristics of human

movement that are lacking or absent from current implementations of classical motor control
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theories. Any complete emulation of human movement must reproduce these behaviors as

well. The goal of these studies is not simply to demonstrate human behavior, but to persuade

the reader to consider an alternative perspective on motor control that moves away from the

traditional trajectory-based viewpoint and instead proposes that movement results from

maintaining probability distributions of the probability of failure and cost of failure.
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Chapter 1

Introduction

1.1 Background

Human movement is performed using a musculoskeletal system that is redundant, non-

linear, and constantly changing. It is controlled using feedback from a sensory system that

is variably delayed and often imprecise. And it is executed in an environment that is full

of potential harm and novel challenges. Nonetheless, human motor control reliably demon-

strates success at generating complex, coordinated movements to achieve very di�cult goals.

Even using tremendous computational power, robotics is still unable to match the robust-

ness, compliance, and flexibility of human movement in real time. How it is that humans

accomplish this has been a widely debated and pursued topic of research (Diedrichsen, 2010;

Haith and Krakauer, 2013).

There are several proposed models of motor control, which predominantly focus on

achieving a goal through a reference trajectory (Todorov 2002; Todorov 2004). However,

motor control is not just about reaching a goal or accomplishing a task, but also avoiding

predictable failure in the process. Risk is inherent in all activity, and avoidance of risk

is fundamental to human survival, so response to risk must be an integral part of human

movement as well. In this report, we describe risk specifically as a combination of two factors:

the probability of failure and the cost of failure. A high cost of failure but low probability

is not generally considered risky (standing several meters away from the edge of a cli↵).

Likewise, a high probability of failure but low cost is not regarded as risky (standing on the
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edge of a step). It is only where high likelihood of failure converges with high cost, when we

stand on the edge of the cli↵, that we venture into high risk.

A new theory, Risk-Aware Control, emphasizes selecting motor actions that minimize

risk (Sanger, 2014). Risk-Aware Control is distinctive from classical theories in that it is an

entirely new way of approaching the relationship between cost and motor actions. It does not

attempt to formulate a reference trajectory to the goal, but instead predicts that movement

develops from maintaining a probability distribution of state, a detailed understanding of

the cost function, and knowledge of the relationship between action and change in state.

The result is a control theory that accounts for uncertainty and cost in motor planning and

execution, plans for unexpected error prior to perturbation, and does not require assumptions

of system linearity. This report goes through the risk-aware control theory and demonstrates

an implementation used to control reaching in a desktop robot. It then details a series of

experiments designed to characterize and emphasize the influence of risk in the environment

on human behavior.

1.2 Specific Aims

The aim of this report is to articulate a new theory in motor control, termed risk-aware

control (Sanger, 2014), to simulate the theory, and to present the results from a series of

experiments that demonstrate the existence of analogous behavior in humans. The stages

of implementation will be described, ultimately developing into a spiking neuron model of

cortex to control a robotic arm in real time.

Additionally, a series of experiments were designed and executed to demonstrate fun-

damental characteristics of human behavior that is exhibited by risk-aware control but is

lacking or absent from the classic motor control theories. These experiments were divided

into two categories of study. The first series looked at the e↵ect of probability of failure

and cost of failure on behavior in a continuous environment task and the e↵ect of errors, or

lack of errors, on behavior. The second set of studies investigated the role of risk in tuning
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reflexes and provided physiological evidence that humans plan for error.

The goal of this paper is to persuade the reader to consider an alternative perspective

on motor control that moves away from traditional trajectory-based viewpoint and instead

proposes that movement results from maintaining probability distributions of the probability

of failure and cost of failure.

1.3 Theory

In this section we will provide a very brief overview of two leading motor control the-

ories, optimal feedback control and equilibrium point hypothesis. We will then describe a

newer theory, risk aware control (Sanger, 2014), and highlight the di↵erences between all

these theories. Risk-aware control is a novel formulation of a classic feedback controller that

replaces the state variables with probability densities and the control trajectory with a dy-

namic cost function defining both penalty regions and rewards. The result is a control theory

that allows for uncertainty in state and control variables and is not based on assumptions

of system linearity. The theory of risk-aware control suggests a reduction in computational

burden compared to current full models of human motor control because it allows for parallel

computing.

1.3.1 Optimal Control Theory and Optimal Feedback Control

Optimal Control Theory is perhaps the most widely accepted prediction of free human

movement. In general, models of optimal control explain a large class of behavior. Existing

variations of optimal control usually optimize a variety of specific cost functions. The form of

the cost will depend on the goal of the task as well as a regularization term that constrains

undesired features of movement (such as jerk or integrated torque change) (Diedrichsen,

2010). Optimal control can be categorized into two classes of models: open-loop and closed-

loop.

Traditional optimal control uses feed-forward motor commands to execute a precal-
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culated trajectory to minimize the specific cost function. Open-loop optimal control was

extended to incorporate sensorimotor feedback in a closed-loop model, optimal feedback

control (Todorov and Jordan, 2002). The feedback driven model transforms the current

state estimate resulting from feed-forward (e↵erent copy of motor commands) and feedback

(a↵erent sensory signals) into a new motor command. In optimal feedback control, the tra-

jectory minimizing the cost function is recalculated at every time point so that a new best

path is recalculated after any deviation from the previously calculated path.

An advantage of this theory is that it also accounts for observations of variability

between trials and the uncontrolled manifold phenomenon. It also inherently solves the

problem of mechanical redundancy and trajectory redundancy (Todorov, 2004).

1.3.2 Equilibrium Point Hypothesis

Studies have shown that muscles possess the same properties as nonlinear springs with

adjustable sti↵ness or adjustable threshold length (Shadmehr and Arbib, 1992; Shadmehr,

2010). Two springs acting antagonist to each other will naturally reach some point of equi-

librium. This equilibrium point can be manipulated by controlling the sti↵ness of the springs

(muscles). This is the basis of equilibrium point hypothesis (referent configuration hypothe-

sis), which postulates that voluntary and involuntary movement arises from a trajectory of

these equilibrium points (Latash 2010a).

Consequently, this theory asserts that descending motor commands do control force

directly, but can only influence the set point of a local feedback circuit. The result is a nervous

system that e↵ectively uses the stretch reflex to control movement. Thus, equilibrium point

hypothesis advocates that movement is an emergent property of the motor system and cannot

be prescribed by any neural controller (Glansdor↵ and Prigogine, 1971; Latash, 2010a). The

system itself is controlled by setting specific parameters and the output is a result of the

interaction of those parameters with the system itself and outside dynamics.
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1.3.3 Risk Aware Control

Risk-aware control (Sanger, 2014) governs movement based on estimates of risk, con-

sequence of state and outcome uncertainty, as well as expectations of the cost of errors.

Fundamentally the term risk is used to describe the expected cost of action. High risk oc-

curs when high cost of failure converges with high probability of failure, as described in

the introduction. Probability of error is regulated by unpredictability or uncontrollability of

e↵ect of actions or current state and cost of error is defined by predictions of the environ-

mental cost and movement objective. The goal is to maximize reward or decrease cost. The

novelty of risk-aware control is that it does not attempt to formulate or follow a trajectory

at any point. Instead movement is the result of maintaining estimates as entire probability

distributions.

The following theory is described in greater detail in Risk-Aware Control (Sanger,

2014). In risk-aware control, the state estimate, x, is replaced by a probability density

changing in time describing the belief of state, p(x,t). State is updated continuously accord-

ing to the equation

@p(x, t)

@t

= Lp(x, t) (1.1)

where L is a linear operator describing a change in state. Therefore, L will be dependent on

the specific choice of action, u. A common instance of such a linear operator is the Fokker-

Plank equation describing a drift and di↵usion process. An equivalent model for physical

systems takes the form of the Ito stochastic di↵erential equation, which often has nonlinear

components.

An important characteristic of L is that since it is a linear di↵erential operator, the

e↵ects of multiple operators can be summed, even if the underlying stochastic dynamics are

nonlinear. This is central to the risk-aware control theory as it means that a superposition

of di↵erent dynamics can be constructed out of the operators,
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ṗ = (
X

i=1

u

i

L

k

)p (1.2)

where u
i

is a set of nonnegative weighting coe�cients. A classical feedback controller can be

constructed by making the control variable, u, dependent on the state variable, x. Instead

of a trajectory, risk aware control implements a cost function, v(x), that defines both the

rewards and potential dangers of being in each state, x. Expected value can thus be calculated

E[v] =
R
v(x)p(x)dx. In order to maximize total expected value, the rate of change in

expected value can be computed as

@E[v]

@t

=

Z
v(x)ṗ(x)dt (1.3)

which simplifies to vLp. In the most basic implementation, we select the action, u, by

maximizing the expected change in reward (or minimizing cost) at any time point.

u(t) = argmax

u

v

t

L(u)p
t

(1.4)

Furthermore, instead of selecting a single action, the superposition dynamics can be

maximized by setting the weighting factor for each L operator proportional to the (positive)

change in expected value corresponding to that operator. This is described by the equation

u

i

= v

T

L

i

p (1.5)

Since we are modeling a physical system, it can be assumed that state is continuous

and can make no instantaneous jumps. Consequently, ṗ(x, t) will be nonzero only where

p(x, t) is nonzero and the L operator will be near diagonal. Therefore, if these assumptions

hold, equation 3 can be rewritten as

u

i

(t) =
X

k

u

ik

(t) =
X

k

v

k

(li
k,k�1

p

k�1

(t) + l

i

k,k

p

k

(t) + l

i

k,k+1

p

k+1

(t)) (1.6)
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With the exception of the sum-reduction (which itself is largely local because nonzero

elements will be clustered) all these operations become local operations. This is important

because it means that neurons will only need information from and to interact with other

neighboring neurons to contribute according to the overall goal of the system. A more

detailed description of the risk aware control theory and the stochastic dynamic operators

has been described in papers (Sanger 2011; Sanger, 2014). One of the most notable strengths

of risk aware control is its computational e�ciency. Unlike Optimal Feedback Control, it can

control complex movement in real time using computers with ordinary processing power.

1.3.4 Comparisons and Conclusions

In terms of output, risk aware control will share many characteristics with optimal

feedback control. However, optimal control theory calculates an optimal trajectory and then

follows that trajectory with standard feedback control. This means that a perturbation

from the trajectory will result in movement back toward the trajectory regardless of the risk

resulting from the perturbation. This is important because setting reflexes is unnecessary

to follow a reference trajectory. However, when controlling the system through dynamics,

such as in risk aware control, tuning reflexes is an inherent result of the system. This may

be observed as planning for unexpected errors, which optimal feedback control does not

inherently exhibit. However, it may be possible for tone to be adjusted appropriately in

OFC by layering multiple feedback loops operating simultaneously on top of each other and

controlling separate gain variables (Todorov, 2004).

Optimal feedback control must also make many underlying assumptions to simplify

the computational burden of reoptimizing the trajectory at every time point. Currently, no

implementations include state uncertainty or action outcome variability or complicated loss

functions (Sanger, 2014).

A stated advantage of equilibrium point hypothesis is its dependence on physics and

physiology instead of an evolution of control theory and robotics (Latash, 2010b). However,
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there is also evidence that appears to refute equilibrium point hypothesis. One shortcoming

of equilibrium point hypothesis is that it cannot explain the ability of people with proprio-

ceptive loss to make voluntary movements (Shadmehr, 2010). Risk aware control updates the

probability of state using both a predictive term and sensory feedback term, which accounts

for how this population can still make accurate rapid arm movements toward a goal. They

may create an accurate internal model and utilize other forms of sensory feedback.

These are only a couple of the theories of motor control that have been proposed. Cer-

tainly it seems that every motor control theory has evidence of being both highly supported

and highly contradicted. It is very probable that specific counterexamples will be able to

be found for any proposed theory of motor control, present and future, as a result of the

flexibility and adaptability of humans. However, it cannot be denied that there are very

fundamental characteristics of human movement that are still unaccounted for by these (and

other existing) motor control theories. Ultimately, we propose that this may be the result

of approaching the problem of motor control from the wrong perspective. Non-trajectory

based motor control, such as risk aware control, still exhibits all the desirable characteristics

of current motor control theories (perhaps with the exception of complex path finding that

OFC solves and the current absence of physiological descriptors that EP posses) while ad-

ditionally describing an assortment of characteristics lacking from current models. The rest

of this report will consist of simulations of risk-aware control and a series human behavioral

studies that highlight the appropriateness of risk aware control as a model of free human

movement.



Chapter 2

Implementation

The ultimate goal of the theoretical work was to implement risk-aware control on a

biologically-realistic distributed network of spiking neurons. Therefore, the first step was

to determine the representation of information. The first section explores the su�ciency of

rate coding as a method of neuronal communication. The second and third sections detail

an implementation of risk-aware control.

2.1 Spiking Neuron Model

A version of this section was prepared to be submitted Psychophysics, Attention, and

Perception.

2.1.1 Introduction

It has been widely established that information can be coded in the average rate of

spikes in a neural signal. However, it is less clear if a train of spikes carries additional

information in the precise temporal pattern of firing or in the relative timing of spikes in

di↵erent cells. Therefore, it was first important to determine if it was necessary to incorporate

spike timing or if rate coding is su�cient to transmit information and biologically realistic.

In this study, we investigate the fraction of information transmitted by spike rate alone in the

visual system by examining the detection curves of images with pixels that flicker according

to a Poisson distribution.
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Almost all information in the mammalian central nervous system is transmitted as

neural spike events, yet controversy remains as to whether the average rate of spikes is suf-

ficient to capture the meaningful information or whether the detailed pattern and timing of

individual spikes might carry additional information (Adrian, 1926; Bhumbra and Dyball,

2005; Knight, 1972; Meister and Berry, 1999; Rullen and Thorpe, 2001; Shadlen and New-

some, 1994; Softky, 1995; Stein et al., 2005). While the answer may be di↵erent for di↵erent

parts of the brain, we investigate here the extent to which firing rate is su�cient to transmit

information about contrast in visual images.

A sequence of spikes that is Poisson-distributed has the property that the number of

spikes in any interval is independent of the number of spikes in any other interval, and thus

information is carried only in the average spike rate. We generate images in which each pixel

flickers with a Poisson distribution whose average rate is given by the desired contrast. The

observed image contrast is always maximum, because pixels are either fully on or fully o↵.

But the information carried in the rate can be more nuanced, representing varying degrees

of contrast for more complex images. Since the original image contrast is only encoded by

the rate, the contrast sensitivity will reflect the brain’s ability to extract information from

rate-coded representation.

Rate coding presents a computational di�culty however. The brain must have a mech-

anism for decoding, or extracting the rate from a sequence of spikes. It is often assumed

this is done by linear filtering, both in time and in space, so that sequential spikes are com-

bined and spikes representing neighboring regions of the image are averaged (Kilikowski and

King-Smith, 1974; Thibos, 1989). This corresponds to both spatial and temporal low-pass

filtering. Linear filtering predicts two phenomena that we will test: (1) Spatial low-pass

filtering will reduce contrast sensitivity at high spatial frequencies, (2) Temporal low-pass

filtering will increase contrast sensitivity when the flickering rate-coded image can be viewed

for a longer time. Our results will reject both of these predictions, suggesting that the brain’s

mechanism of perception behaves as a nonlinear filter so that sharpness and rapid temporal
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responses are not lost in the decoding process.

We test the psychometric properties of spatial-frequency grating images in which con-

trast is represented by the Poisson rate. If the psychometric curves for such images parallel

those for normal grayscale images, then this supports the claim that contrast can be repre-

sented by rate coding. If the images retain sharpness at high frequencies, this contradicts

spatial low-pass filtering as a decoding method. If the contrast sensitivity does not improve

with longer presentations of the flickering images, this contradicts temporal low-pass filtering

as a decoding method.

2.1.2 Methods

Participants

The study consisted of 9 adults (4 males, 5 females), ages 23 to 28, with normal or

corrected-to-normal vision. Sample size was designed to detect approximately a 1 standard

deviation di↵erence with 80 % power. Subjects provided consent as approved by the Univer-

sity of Southern California Internal Review Board and received compensation for their time.

Apparatus and Stimuli

In addition to the typical achromatic analog sinusoidal gratings (Campbell and Robson,

1968), this study implemented rate-coded sinusoidal gratings. In these images, each pixel

contained only one bit of information per frame, i.e. each pixel was either white or black

(100% contrast). The information of the image was coded in probabilistic contrast instead

of luminance contrast. Probabilistic contrast, the probability of a pixel being either white or

black, was proportional to luminance contrast. This is a type of dithering, random dithering

(Russ, 2016), generates a one bit-per-pixel image in place of the original analog image.

When a sequence of such dithered images is generated from the same original analog image

by choosing pixel probabilities independently for each frame, the time-averaged luminance
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of the image sequence is the same as the luminance of the original analog image. Classical

experiments use Michelson’s formula (Michelson, 1927) to calculate contrast of an image:

C =
L

max

(x)� L

min

(x)

L

max

(x) + L

min

(x)
(2.1)

where L
max(x)

is the luminance at the peak of the sinusoid, L
min(x)

is the luminance at

the minimum and C is the contrast of the image. The probabilistic contrast values referenced

in this paper are derived from the same basic equation:

C =
P

max

(x)� P

min

(x)

P

max

(x) + P

min

(x)
(2.2)

In this case, P
max(x)

and P
min(x)

are the probabilities that a pixel will be on at the

maximum and minimum of the sinusoid respectively. We will refer to these images, such

as figure 2.1, as stochastic images. Since pixels are chosen randomly, each stochastic image

will be unique while still derived from the same original image. We refer to a sequence

of stochastic images derived from the same original analog image as a “dynamic stochastic

image”. We will measure the contrast sensitivity for dynamic stochastic images comprised of

a sequence of 5 stochastic images presented in a cyclic series at 30 frames per second (fps).

Stimuli were presented over a black background on 24-inch, 1080p resolution light

emitting diode screen (DELL 1280x1024 maximum resolution). This screen was limited

to 32-bit color. At this color resolution, the edge between two regions of adjacent gray

levels (di↵ering only in the least significant bit) is visible with normal vision. Pilot studies

indicated that subjects could detect these edges, resulting in an artificially high spatial

grating sensitivity at low contrast. In order to simulate a true analog contrast grating,

the analog images were generated using a “noisy-bit” method characterized by Allard and

Faubert (Allard and Faubert, 2008). This method involves adding uncorrelated noise to the

contrast of each color channel of a pixel in order to soften the visible edges between color

blocks. Allard and Faubert verified that the noisy-bit method is perceptually equivalent to
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a continuous display and does not significantly impact the contrast sensitivity function. It

should be noted that while this method is a type of dithering, the technique and outcome

are very di↵erent from the dithering implemented in our stochastic images. The noisy-bit

method adds the smallest possible increment of white noise to each analog color channel.

Therefore it a↵ects only the least significant bit for each channel, leaving the remaining bits

unchanged, whereas in our stochastic images each pixel is fully on or o↵ and information

is carried only in the probability. (A noisy-bit image clearly carries more information per

frame than our stochastic images, but it cannot be used to assess for rate coding in our

experiments, because temporal coding, including details of the spike sequence or timing,

could potentially be used by the brain to encode the contrast of the non-dithered bits of the

image.)

Figure 2.1: Static Stochastic Sinusoidal Grating. Subjects were presented with images

such as the one above. The above figure is a quarter panel of the experimental images

(350x350 pixels, 3.82x3.82 inches). This is an example of .125 probabilistic contrast and 4

cycles per degree.

In order to ensure more than one sinusoid cycle was visible for all spatial frequencies,
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each original analog image was generated at 700x700 pixels (7.64x7.64 in). The sinusoidal

grating varied in frequency, probabilistic or luminance contrast, and orientation. The fre-

quencies implemented were .0920, .1840, .3680, .7361, 1.4721, 2.9443, and 5.8885 cycles

per degree; the probability contrasts were .25, .125, .0625, .0313, .0156, and .0078 for the

stochastic images and the deterministic contrast was 0.0625, 0.0313, 0.0156, 0.0078, 0.0039,

and 0.0020 for the analog images. The direction of the grating was either vertical or horizon-

tal. The frequencies were chosen from pilot studies to visualize the entire contrast sensitivity

function and the contrast values were selected such that the stimulus could never be detected

at the minimum and could very clearly be detected at the maximum. Analog (noisy-bit)

images, static stochastic images, and dynamic stochastic image sequences were compared.

Each of these conditions was repeated 4 times for a total of 1008 trials (2 orientations x 4

repeats x 6 contrasts x 7 frequencies x 3 types of images).

Procedure

A two-alternative forced choice (2AFC) method was used (Blackwell, 1952) with auto-

mated experiment software written in MATLAB (version 7.13.0.564. Natick, Massachusetts:

The MathWorks Inc., 2011). The screen was the only significant light source in an otherwise

empty room. Subjects were positioned eye-level and centered on the image at a viewing

distance of 22 in. Subjects were not restrained with a chin rest, but were asked to maintain

the same position throughout the entire experiment to the best of their ability. Lack of

significant movement was confirmed by direct observation. The stimulus resolution was 37

pixels/degree.

The experiment was divided into two 30-minute sessions in an attempt to facilitate

a more constant attention level. Subjects viewed each image for 2 seconds, followed by 2

seconds of black screen during which subjects were prompted to identify the orientation of

grating (vertical or horizontal). Subjects were told that no response would automatically

be considered incorrect. These instructions were printed on an information sheet given to
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subjects and reiterated by the experimenter prior to testing. Subjects were not provided

with feedback on correct or incorrect responses.

Data Analysis

All subjects neglected to answer some number of trials, so for analysis purposes, if

the subject did not respond in the allotted time, the trial was counted as half correct. The

underlying psychometric function of sensory perception cannot be observed directly, but is

inferred from the empirical data. Therefore it is necessary to utilize certain analysis tech-

niques in order to estimate the true psychometric functions and resulting contrast sensitivity

function.

To construct psychometric curves, the raw data were fitted using a maximum likelihood

estimation to the normal cumulative distribution function with an adjusted baseline.

F (x) =
1

4
(1 + erf

x� µ

�

p
2
) +

1

2
(2.3)

In equation 2.3, x is the contrast, µ is the mean of the normal distribution (shift of the

psychometric function), � is the standard deviation of the normal distribution (steepness

of the slope of the psychometric function), erf is the Gaussian error function, and F(x)

is the probability of correct response. Threshold was determined using the nonparametric

Spearman-Karber method (Karber, 1931; Miller and Ulrich, 2001; Miller and Ulrich, 2004;

Spearman, 1908) at each spatial frequency for each subject. All data and statistical analyses

were done in MATLAB and R (A Language and Environment for Statistical Computing,

version 3.0.1. Vienna, Austria: R Development Core Team, 2013).

2.1.3 Results

While the psychometric function is arguably the most fundamental and widely used

tool in visual psychophysics, it is conceivable that the normal psychometric function may
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not be a well-suited analysis tool for stochastic images. Therefore, to assess the shape of

the stochastic detection curves, the fits of the psychometric function were compared between

image types. The averaged means of the R-squared values for the analog, static stochastic,

and dynamic stochastic images respectively were 0.7369, 0.8213, and 0.8284. This suggests

that the stochastic images are at least as well fit, if not better fit, to the cumulative normal

distribution as the analog images within the constraints of this study.

The Spearman-Karber method, which makes no assumptions about the underlying

distribution of the data and provides more accurate estimates of location and dispersion

parameters, was selected for its generally superior performance regardless of the underlying

distribution (Miller and Ulrich, 2001; Miller and Ulrich, 2004). Within this study, the

threshold values of individual subjects demonstrated more consistency implementing this

analysis technique. However, the Spearman-Karber method only quantifies the moments of

the distribution, it does not provide a continuous estimate of the psychometric function.

A two-way repeated measures ANOVA comparing sensitivity (inverse of threshold) to

all three types of images and spatial frequencies showed that there was a significant e↵ect

of image type (p < 0.001, F(2,189)=40.13) and spatial frequency (p < 0.001, F(6,189) =

16.55) as well as a significant e↵ect of the interaction (p < 0.001, F(8,189) = 8.46). A

two-way repeated measures ANOVA comparing between the two types of stochastic images

revealed no significant di↵erence in type (p=0.582,F(1,126)=8.2) and no significant di↵erence

in spatial frequency (p = 0.176,F(6,126)=1.858). In short, the sensitivity to stochastic images

was significantly di↵erent from analog images, while sensitivity between the static stochastic

and dynamic stochastic images was not, as shown in figure 2.3. Post hoc pairwise t-tests

were used to compare the sensitivity between images at each spatial frequency. None of the

static stochastic-dynamic stochastic pairs were significantly di↵erent (p < 0.05). There was

a significant di↵erence (p < 0.05) between sensitivity to the stochastic and analog images at

the four highest spatial frequencies.
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Figure 2.2: Psychometric Functions. These figures contain the psychometric functions,

fit with equation 2.3, to the pooled raw subject data for each image type. The dots indicate

the percentage of correct responses for each subject under each condition. The black, red,

and blue lines indicate the fit resulting from the analog, static stochastic, and dynamic

stochastic images respectively. The y-axis represents percentage of correct responses and

the x-axis is contrast (calculated by equation 2.1 or 2.2) on a logarithmic scale. Above each

panel is the spatial frequency value of the visual stimulus.



18

Nevertheless, while the sensitivity was significantly di↵erent between stochastic and

analog images, the shapes of the detection curves were remarkably similar. All three con-

trast sensitivity functions peak at nearly the same frequency. This point is illustrated by

multiplying the entire analog contrast sensitivity curve by 0.4. A two-way repeated measures

ANOVA between the sensitivity to the static and dynamic stochastic images and sensitivity

(x 0.4) to the analog images is no longer significantly di↵erent (p = 0.875, F(2,189) = 0.133).

Moreover, in post hoc tests, not a single pairwise t-test between image types within spatial

frequency was significantly di↵erent (p < 0.1).

Figure 2.3: Mean Contrast Sensitivity Functions ± SE Figure illustrates the contrast

sensitivity function for each image type. The black, blue, and red circles indicate the sensi-

tivity to the analog, static stochastic, and dynamic stochastic images respectively. The bars

designate standard error at each point. Spatial frequency is represented by the x-axis and

sensitivity on the y-axis. Both scales are logarithmic.
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2.1.4 Discussion

Most classical studies have reported peaks in the contrast sensitivity function between

2 and 7 cycles per degree (cpd) for normal human vision (Campbell and Robson, 1968;

Owsley, 2003; Van Nes et al., 1967), and our measured peak of the analog contrast sensitivity

function in this study is consistent, with a value between 1.8 and 7.2 cpd. The peak of the

contrast sensitivity function for each of the three types of image occurred at approximately

the same spatial frequency. The psychometric functions resulting from the stochastic images

has a similar shape but with lower sensitivity compared to the original image. Part of the

reason for the di↵erence in sensitivity is that the stochastic images introduce high-frequency

spatial and temporal noise due to the quantization and the highly visible pixel boundaries

throughout the image. In addition, any single stochastic image contains less information

(only one bit per pixel) than the original (8 bits per pixel). The fact that the psychometric

curves have similar shapes suggests that the brain is capable of processing rate-coded data.

The most common decoding method for rate-coded data is to count the spikes over a

period of time or average the spikes from neighboring pixels in order to obtain an estimate of

the mean spike rate. However, averaging nearby pixels is a spatial low-pass filter that would

be expected to have a specific deleterious e↵ect on contrast sensitivity at high frequencies.

No such e↵ect was seen in our data, and the psychometric curves for the dithered images

parallel those for the original analog images. Similarly, averaging the value of a single pixel

over a period of time will eventually recover the exact analog value of that pixel, with better

estimates as averaging occurs over a longer period of time. No change in the sensitivity with

longer periods of time was seen in our data. Therefore our results are inconsistent with the

use of either a spatial or temporal contrast sensitivity.

Di↵raction, optical imperfections, and retinal issues cause a decrease in spatial fre-

quency contrast sensitivity similar to a low-pass spatial filter (Campbell and Green, 1965;

Thibos, 1989). However, since subjects can easily identify individual pixels and pixel edges
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in our stochastic images, any inherent low-pass spatial filtering at the retinal level has cuto↵

frequencies higher than the spatial resolution of a single pixel in our images. We conjecture

that the reason the contrast sensitivity function for the stochastic images parallels that for

analog images is that both types of images are rate-coded in the same way by the retina.

Each pixel in the analog image will cause a group of retinal ganglion cells to fire, and if this

firing is rate-coded then the two types of images have no functional di↵erence. This is anal-

ogous to the way in which a full-spectrum color image and an image coded only using red,

green, and blue pixels both produce the same color percept, because both types of images

yield the same retinal output.

The stimulus resolution was 37 pixels per degree or roughly 1,500 pixels per square

degree. The fovea contains approximately 17,500 cones per square degree (Kolb, 2005).

This means that at the fovea, there are just over ten cones per stimulus pixel. Under the

rate-coding hypothesis, a single pixel from the analog image will stimulate ten cones each

of which will fire independently at a rate proportional to the contrast. In the stochastic

image, all ten respective cones will be on or o↵ together. This discrepancy in resolution

could account for up to approximately a magnitude of di↵erence between sensitivity to the

stochastic images and the analog images.

The di↵erence between the analog and stochastic images is clearly visible. This is partly

caused by the flickering itself being visible, because the 30hz monitor update is below the

critical flicker frequency for much of the image. In addition, the dithering process introduces

high spatial-frequency noise even in regions that were constant in the original analog image.

Therefore although the stochastic images are conjectured to generate retinal ganglion output

similar to the analog images, there is additional retinal ganglion output due to unavoidable

introduction of high spatial frequencies by the dithering process. Even if this is not a cause

of degraded contrast sensitivity, it will produce a perceptual di↵erence between the two types

of image.

Very high standard deviations in a local region of an image are rarely, if ever, found
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in the natural world (Attneave, 1954). There is no reason that humans should be good at

interpreting this type of image. However, if visual information is carried in the rate of spikes,

then the stochastic images are simply translating the visual image into an understandable

neural code and bypassing part of the retinal encoding process. The results establish that

rate coded spike data is largely su�cient for a full contrast sensitivity function. Furthermore,

if Poisson-distributed spike trains are decoded with linear filters, then information present in

higher frequencies will be lost. While there was a significant decrease in sensitivity between

the stochastic stimulus and analog stimulus, this reduction was relatively proportional across

the span of spatial frequencies. Our results are thus inconsistent with spatial or temporal

linear filters as a decoding mechanism, and support the possibility that the brain uses a

nonlinear filter to extract information.

We have built an iOS application that utilizes the camera feed and in real time dithers

the image following the methodologies of this paper. (The application, “BabyCatnip”, can

be downloaded from the Apple Inc. App Store.) The content of the original images is clearly

visible, and object recognition, reading, and motion perception are possible. We conjecture

that because of the high contrast of the dithered images, they are particularly engaging

for infants and could potentially be useful for improving visual perception in people with

decreased contrast sensitivity. Testing the perceptual thresholds for object recognition and

motion and testing the potential utility of such images for patients with retinal disease will

be topics of future research.



22

2.2 MATLAB Implementation

In order to demonstrate and quantify the characteristics of risk-aware control, we

wanted to implement the theory in a real-time biologically-realistic system. Prior to a full

implementation, we performed a basic proof of concept in MATLAB. This demonstration is

the most basic form of the control theory and was not performed in real-time.

2.2.1 Methods

The distributions were organized by spatial representation, i.e. each index represented a

specific location in space. In this implementation, all values and calculations were performed

as floating point numbers. The probability distribution of state, p(x), had an assumed

constant standard deviation. The update equation, eq 1.2, was used to update the probability

of state given a particular action. The possible actions in this case were move left, move

right, or no movement, and were determined by equation 1.4. The gain was not proportional

to the change in expected cost, each action was all-or-nothing, so it is important to note

that this implementation will not have reflexes tuned to the risk.

The cost function was described by an image similar to a road, with a large cost

outside the boundaries of the road and a smaller cost between lanes, such as 3.1. In the

figures below, cost was represented by darkness; black was high cost and white was reward

or no cost. While the cost function is represented by a two-dimensional image, the cost

function was incorporated as a 1-dimensional spatial cost function changing in time. An

analogy to this is driving at a constant speed, at any point in time the car can move left or

right on the road, perpendicular to the automatic forward motion of the car.

2.2.2 Results

No experiments were performed with this implementation, only the demonstrations

show below. The figures illustrate the probability distribution of state as the cost function
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changes with time. The first set of figures demonstrate the e↵ect of initial conditions on

the movement. The figure on the left, 2.4(a), starts at an initial maximum likelihood of 40

pixels and the right figure, 2.4b, starts at 170 pixels. In each case, the maximum likelihood

moves toward the center of the closest reward channel and remains there. In this example,

the standard deviation is relatively low (10 pixels), so the maximum likelihood (the dark red

line) remains nearly in the middle of the edge boundary (high cost) and centerline boundary

(lower cost).

Figure 2.4: Probability of State for Left and Right Initial Conditions. These figures

illustrate the probability distribution of state as the cost function changes with time. This

can be imagined as driving, the movements are only 1-dimensional (in the horizontal plane),

but the cost function of 1-dimensional state is changing with time. The figures demonstrate

the e↵ect of di↵erent initial conditions. In the figures, the colors represent the probability

distribution of state (high probability in red and low probability in blue). The dark line

indicates the maximum likelihood. The simulation demonstrates that the probability distri-

bution of state moves to the nearest reward channel and stays there, since the channels are

equivalent.

The second set of figures, figure 2.5 portrays the e↵ect of the standard deviation of the

probability distribution or certainty of state. As the uncertainty increases, the probability of

state moves towards the center of the road, with the maximum likelihood remaining on top

of the center low cost region when the uncertainty is high enough. The state shifts toward

the lower cost to appropriately avoid the higher cost. The final figure, 2.6 demonstrates a
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higher cost of movement. A small increase in expected cost is accepted to save energy. The

result is a probability distribution that only shifts when most necessary to avoid cost.

Figure 2.5: Probability of State for Larger Standard Deviations.

These figures are the same as in figure 2.4, but the standard deviations of the probability

distribution of state, p(x), are increased. When the Gaussian is widened to 20 pixels standard

deviation, the maximum likelihood line hugs the center low cost region instead of being

between both boundaries as in figures 2.4. When the Gaussian is further stretched to 40

pixels standard deviation, the maximum likelihood sits directly on the low cost centerline.

Figure 2.6: Probability of State for Cost to Move.

This figure is the same specifications as figures 2.4, with the cost to move or energy term

increased. The maximum likelihood still remains between the high cost and low cost regions,

however it only moves to the left of right when necessary to avoid contact with a penalty

region.
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2.3 Spiking Neuron Implementation

A version of this section, along with section 1.3, was submitted to Journal of Neural

Engineering.

2.3.1 Methods

The first simulation demonstrates the that risk aware control appropriately controls

position according to a specified cost function. However, the question remains whether it

is possible to implement Risk-Aware Control on a biologically-realistic distributed network

of spiking neurons. In an existential proof, we were able to control a desktop robot (Sens-

able PHANTOM Omni Haptic Device) in real time using Risk-Aware Control to navigate

a visually specified cost function. Real-time control was implemented utilizing the GPU

(NVidia GTX 970) on a laptop computer (Alienware 17) programmed using a CUDA library

(Accelerate) within Python (Anaconda2, Python 2.7). The cost function was derived from

the built-in camera at 30Hz (OpenCV).

We simulated risk-aware control using a spiking neuron model of cortex. The model

was comprised of layers of 640x480 neurons represented by Poisson-distributed binary spikes.

The simulation demonstrated 2-dimensional movement, but the dimensions were controlled

independently of each other.

The probability of state, p(x), was encoded in a 640x480 layer of spatially tuned neu-

rons. In the simulation, the probability of state was assumed to be Gaussian around the

sensory estimate of the robotic arm. While this implementation only considered information

from the robot position sensor, this estimate could be obtained from multisensory integra-

tion combined with an internal model estimate of state for a more biologically-realistic state

estimate.

The cost of state, v, was encoded in two spatially analogous layers, a layer for reward

regions and a layer for penalty regions (positive and negative costs). Cost of state was
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derived from the camera feed at 30Hz. A neuron in the positive cost layer was on only if

the associated pixel fell within the blue color range. Similarly, a neuron in the negative cost

layer was turned on if the associated pixel fell within the red color range. This created a

visually guided cost function with regions of both reward and potential harm.

Likewise, four layers were dedicated to kernel positive and negative representations of

state for each spatial direction (vertical and horizontal). These layers represented neurons

with input from multiple neighboring presynaptic cells that characterize a smoothed positive

and negative probability of state. Neuronal layers were separated into positive and negative

representations since spikes cannot inherently take on negative values, but negative changes

in density must be accounted for.

Lastly, there was a layer for each action encoding the change in expected cost. The

possible actions in this implementation were positive force and negative force in the each

direction. These final layers represented the profit from each action for each individual

neuron that were ultimately summed to determine the weighting factor, u
i

in equation 1.2.

This resulted in a total of 11 layers of approximately 300,000 neurons for a total of nearly

3.5 million neurons in the model.

As a result of this distributed representation, described in equation 1.5, the mathe-

matical operations largely become local and/or operations. These types of operations lend

themselves well to GPU computing. Utilizing the GPU for computational power, the imple-

mentation operated at approximately 30Hz, the upper limit for the frame rate using OpenCV

to obtain the camera feed. Due to limitations of the robot drivers and computer hardware,

the robot was run using a separate PC and communicated with the laptop running the

Risk-Aware Control code via UDP connection. The control diagram is outlined in figure 2.7.

Code for the Risk-Aware control is included for reference in the supplemental information.



27

Figure 2.7: Control Diagram of the Robot and Risk-Aware Control.

The diagram illustrates the specific locations where the gain amplifier and damping amplifier

enter the control loop. The dashed lines indicate the functions that are performed by each

computer.

2.3.2 Experiments

The first test of the implementation was a simple sinusoidal tracking task. The robot

was presented with a blue circle (reward region) moving in a horizontally sinusoidal motion

with sweeping frequency. The lowest frequency, .03 Hz, was chosen to be a speed that the

robot could easily and accurately track and the highest frequency, .6 Hz, was large enough

so that the robot was unable to keep up with the speed of the cost function. The moving

image was created in MATLAB and presented on an external display positioned in front of

the camera, as seen in figure 2.8. The cost function display was positioned 27 inches away

from the Alienware camera. The set up is depicted in figure 2.8.
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Figure 2.8: Pictures of the Robot Set-up.

Figure A shows the view of the robot and computers and figure B displays the set up of

the cost function monitor. The camera from the Alienware laptop observes the video cost

function on the external monitor in real time. The cost function and spiking representation

of the probability distribution can be seen on the laptop screen.

The stability of control will depend on the gain, damping, and control loop delay.

The control loop was already operating at the maximum frame rate supported by OpenCV,

therefore only gain and sti↵ness could be manipulated to optimize performance. If the

gain is too high, the trajectory will demonstrate instability, specifically oscillations, due to

overshoot of force. If the gain is too low, the robot will not have su�cient force to keep

up with a rapidly moving cost function. The damping parameter will have a similar, but
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opposite, outcome. The gain we describe is a gain within the risk aware control algorithm

that can be thought of as an amplifier on the twitch strength, which we will refer to as

RAC gain. Conversely, the damping parameter was a negative gain on velocity operating

at 1000Hz added to the control loop on the robot. The location these parameters enter the

control loop can be found in figure 2.7. The second experiment explored the e↵ect of the

damping and gain parameters on the control. The tracking paradigm of the first experiment

was repeated for various damping and gain values and the average standard deviation of

movement at rest and the average amplitude of movement across frequencies were compared

between conditions. All combinations of three damping values, from 0.8 to 1.2, and ten gain

values, from 1 to 10, were evaluated.

The final experiment investigated the implementation’s response to perturbation. In

risk-aware control, the e↵ect of a perturbation on the state is mathematically identical to

a perturbation on the cost function. For ease of implementation, the perturbation was

performed to the cost function. The shape of the cost function was an ellipse with the

diameter of the major axis equal to twice the diameter of the minor axis. The orientation

of the ellipse was varied so that the perturbation force occurred along either the major axis

(horizontal orientation) or minor axis (vertical orientation). In addition to orientation of the

cost function, the perturbation size and standard deviation of probability of state were also

varied.

2.3.3 Results

The implementation was first assessed using a simple tracking task. The tracking

results from a single experiment can be seen in figure 2.9A. The first segment is the results

of the sinusoid tracking and the second segment tracks a stationary cost function. The gray

shaded region indicates the reward region and the thick black line denotes the actual position

of the robot arm. The robot follows the desired trajectory well within a range of frequencies.

At very low desired frequencies (no motion), the robot produces small oscillations. At very
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high desired frequencies, the robot cannot keep up. This tradeo↵ between stability and speed

was explored in more detail in the second experiment.

Figure 2.9: Tracking Data of Trajectories.

Figure A demonstrates the tracking data from the first experiment. The gray shaded region

indicates the region of reward from the cost function (desired trajectory). The solid black

line denotes the actual position of the robotic arm. Figures B and C display the tracking data

from second experiment. Figure B shows the e↵ect of decreased damping and increased gain.

The robot keeps up with the cost function much better, however there are very prominent

oscillations at the lower frequencies. Figure C shows the converse, increased damping and

decreased gain coe�cients. In this case, the robot arm is very stable, but has di�culty

tracking the cost at high frequencies.

In the second part of the study, the first experimental setup was repeated under 30

di↵erent conditions to evaluate the best damping and gain parameter values. The raw track-

ing data from the combinations of low damping/high gain and high damping/low gain can

be seen in figure 2.9B and 2.9C respectively for comparison. Two outcome measures were

used for assessment: the stability of the robot, and the speed of the robot. Stability was

measured by the standard deviation of the robot arm while tracking a stationary target di-
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rectly following the sinusoidal tracking. The results can be seen in figure 2.10A. As expected,

there is a general trend of increasing stability with decreasing RAC gain. Interestingly, there

is a steep slope of change in stability at an RAC gain of around 5. The average standard

deviation for all gains was 10.5 for a damping of 0.8, 8.0 for 1.0, and 6.0 for 1.2. Conversely,

results demonstrated a general trend of increased speed with increased gain, shown in figure

2.10B. Speed was evaluated by calculating the average amplitude the robot reached across all

frequencies. If the robot were able to keep up with the cost function, the average amplitude

would be equal to the amplitude of the sinusoid. The average amplitude was 408.2 pixels

at a damping of 0.8, 396.5 at 1.0, and 388.0 at 1.2. The relationship between the average

amplitude and RAC gain demonstrated a more linear trend than the stability parameter.

Figure 2.10: Stability of Stationary Tracking and Speed of Sinusoidal Tracking.

Figure A illustrates the e↵ect of RAC gain and damping on the stability of tracking. Stability

is measured as standard deviation of movement tracking a stationary target. Figure B depicts

the e↵ect of RAC gain and damping on the ability of the robot to keep up with a moving cost

function. This was measured as the average amplitude the robot reached while tracking the

sweeping frequency cost function. A larger amplitude corresponds to an increased tracking

speed.
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Di↵erent parameters may be desirable for di↵erent tasks. This is seen in human move-

ment as well, where increased damping or sti↵ness is often observed for increased risk in

order to decrease instability (Burdet et al., 2001; Perreault et al., 2002). It would be possi-

ble in the future to incorporate these state variables to be dependent upon risk in a similar

manner.

The final test of the implementation was to evaluate the response to perturbations.

In risk-aware control, a reflex response will only be initiated if the perturbation pushes the

state towards risk or away from the goal of a task (Sanger, 2014). This property has been

observed for the long latency stretch reflex in humans (Crago et al., 1976; Hammond, 1956;

Ludvig et al., 2007; Rothwell, 1980). Moreover, the control theory dictates that the reflex

response will be dependent on the risk. Therefore, perturbations that drive the state toward

higher risk will have a proportionally higher reflex response. This phenomenon was observed

in the results, shown in figure 2.11. In these trials, the perturbation either pushed the cost

function along the major or minor axis of the ellipse, but the trajectory of the center of the

cost function was identical between orientations. The dotted line indicates the perturbation

displacement. At all distances, the vertical cost function elicits a larger response, in terms

of both slope and change in position. In fact, overshoot is observed from the increased force

of response for the vertical cost, but not for the horizontal cost. This is because the risk

of a perturbation along the minor axis is greater than the risk of a perturbation along the

major axis due to the width of the cost region. This behavior is exacerbated for smaller

standard deviations of probability of state. However, when the standard deviation of the

state probability density is near half the width of the cost, oscillations begin to occur. This

could be mitigated by including a second order term to the state in the risk-aware control

implementation.
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Figure 2.11: Response to Perturbation.

The left box illustrates the cost function implemented in the perturbation experiment. The

plot depicts the response to di↵erent displacement perturbations (indicated by color) for the

vertically (dashed) and horizontally (solid) oriented cost functions. The dotted lines indicate

the actual size of perturbation. The standard deviation of the probability distribution was

80 pixels, the same as the width of the minor ellipse axis.

2.3.4 Discussion

Risk-aware control is a simple theory with simple implementation, but powerful results.

Current leading theories of motor control cannot be fully implemented in real time, even

with immense processing power. The results from this study demonstrate successful control

of visually guided reaching movement using a Poisson spiking neuron model. We have

demonstrated that even a basic implementation of risk-aware control exhibits the ability to

appropriately navigate a risky environment in real time on an ordinary laptop computer with

a graphics processing unit. We have explored the parameters to optimize performance for a

task and characterized the response to perturbations as well as the limitations of stability

and speed in this particular implementation.
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Humans are able to accomplish very complex behaviors in novel environments. Existing

computers are certainly able to match the computational power in both magnitude and time

as the human brain. However, the field of robotics has still not been able to reliably simulate

the compliance, complexity, and robustness of human movement. Therefore, it may be

speculated that the limitation lies primarily in inferiority of the control algorithms, plasticity,

and organization, and therefore that alternative theories of movement control should be

explored. Risk-aware control is ultimately an instance of a standard feedback controller,

but has the unique approach of representing state and control variables in the probability

domain allowing for uncertainty in state and control. In the future, this implementation will

be extended to include more complex, learned dynamics and a predictive internal model for

increased stability. It is the goal that the outcome will be an adaptive, compliant controller

that can be executed on modern computers in real time.



Chapter 3

Human Motor Response to Risk

3.1 Experiment 1: The Tuning of Human Motor Response to Risk in a

Dynamic Environment

A version of this was published in PLoS ONE.

3.1.1 Introduction

Previous studies (Landy et al., 2012; Trommershauser et al., 2003a; Trommershauser

et al., 2003b; Trommershauser et al., 2005) have investigated the e↵ect of risk on motor

planning. Trommershauser and colleagues (Trommershauser, 2003a) have demonstrated

that humans are able to maximize expected gain by using internal representations of the

magnitude of outcome uncertainty. When outcome uncertainty was artificially enhanced

by randomly perturbing trajectory end-points, subjects still demonstrated the ability to

maximize reward based on end-point variability by shifting their mean trajectory endpoints

in response to changes in penalties and location of the penalty region relative to the target

region. Furthermore, it has been shown that subjects respond to changes in uncertainty when

it is artificially increased or decreased without cue during an experiment. However, these

experiments all investigate behavior in discrete-tasks, such as rapid pointing to a target.

While there is a general lack of consensus on the degree of online error correction during

motor program execution involved in these rapid movements, their duration is certainly too

short to take full advantage of feedback control loops (Galen and John, 1995; Keele and
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Posner 1968) and therefore they rely primarily on motor planning (Maloney et al., 2007).

In such experiments, we can investigate the e↵ect of uncertainty on motor planning but not

the e↵ect on ongoing control of continuous movements.

While there is good evidence that humans plan movements taking risk into account, it

is not clear how this occurs. For example, people might avoid actions that have previously

led to poor outcomes as predicted by error-driven learning (Wei and Kording, 2008). We

consider the hypothesis that humans actively and continuously estimate both the probability

of failure and the cost of failure, and that they make ongoing corrections to movement based

on these estimates. In general, the probability and cost of failure may vary throughout the

workspace, so to do this requires maintaining estimates of these values for all states that could

possibly result from movement errors. This ability is a foundation of risk-aware control, a

theory of motor control in humans that links ideas in optimal control with existing literature

on risk behavior in humans (Sanger, 2014). If humans have this ability, then it is also possible

to estimate risk without experiencing failure. Therefore we hypothesize that humans will

respond to perceived risk even in situations where failure has not been experienced. At the

most extreme, this means that humans will select movements that reduce risk even when

the probability of failure is negligible.

To test this hypothesis, we designed a driving simulation experiment with a cost func-

tion similar to that of figure 3.1 and to the cost function used in the simulations implemented

in chapter 1. Each lane became a reward region and driving o↵ the road or between lanes

resulted in a point penalty. If humans maintain estimates of both probability of failure and

cost of failure, then where in a lane the subject drives should depend on the specific form of

the cost function. We further predict that these changes in behavior do not require subjects

to experience failure (driving o↵ the road).
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Figure 3.1: Theoretical minimization of cost under uncertainty.

In figures a-d, the shaded red distributions represent an uncertainty or variability in position.

Grey bars signify penalty regions, the darker the grey, the higher the cost. The peaks of the

curves illustrate the optimal position to minimize cost based on the standard deviation of

uncertainty and the cost function. In (a) the loss function is symmetrical. The result is that

there are two optimal positions that will minimize cost. Figure (c) demonstrates the e↵ect

of increasing the cost of the outer boundary, dark grey regions, from left to right (1, 10,

100). The result is a shift in peaks toward the lower cost region in the center. Similarly, as

the standard deviation of uncertainty increases from top to bottom (.35, .75, 1) the optimal

position again shifts toward the center lower cost region. At high standard deviation of

uncertainty and high outer boundary cost, the optimal position becomes directly in the

center of the middle region. Figures (b) and (d) illustrate the same phenomenon for an

asymmetrical loss function. Here the left boundary penalty remains very high (1000 points)

while the right boundary in (d) increases from left to right (1, 10, 100). In this case there

are no longer two optimal positions, only one in the segment that is farther away from the

high cost.
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3.1.2 Materials and Methods

Subjects

Twelve nave subjects, ages 22 to 35, 9 males and 5 females, participated in the ex-

periment. The University of Southern California Institutional Review Board approved the

study protocol. All subjects gave informed written consent for participation and received

compensation in proportion to their final score plus a base sum (Study IRB# UP 09 00263).

Authorization for analysis, storage, and publication of protected health information was ob-

tained according to the Health Information Portability and Accountability Act (HIPAA).

Apparatus

The experiment was performed on an iPad2 (iOS 6.0, resolution of 1024x740 pixels)

in landscape orientation. A custom application was created using CoronaSDK (Version

2012.11.15. Palo Alto, California: Corona Labs Inc., 2012). The update rate of the screen

and rate of data acquisition was 30 fps.

Stimuli and Procedure

The experiment took approximately one hour to complete, with small breaks as nec-

essary, and was completed in a dimly lit room to avoid screen glare. For biomechanical

uniformity, subjects were instructed to sit in a chair, maintaining their shoulders against the

backrest, and to keep their elbows at approximately 90 degrees with their biceps inline with

their torso during the entire experiment. Subjects grasped the sides of the screen with both

hands at all times. Instructions for the experiment were verbally specified by the experiment

administrator and presented again on the iPad screen for the subjects to read once they

entered the application.

In the experiment, subjects maintained one-dimensional “steering” control of a vehicle

in a driving simulation. The goal of the game was to complete each trial as quickly as
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possible, where the speed of the car was determined solely by position on a two-lane road.

While on the road, driving within a lane yielded acceleration to the maximum velocity

(1100 pixels/sec), driving on the dashed line between the two lanes caused the vehicle to

decelerate to 550 pixels/sec, and hitting the grass along the side of the road slowed the car

to 2 pixels/sec (which will be referred to as “stopped” as the car could hardly be detected

as moving). Figure 3.2 contains a screenshot of the application. Subjects were able to

control the position of the car by tilting the iPad in the left/right directions. Points awarded

were inversely proportional to the time taken to complete each trial. Subjects could earn a

maximum of 100 points per trial if they maintained the maximum velocity along the entire

length of the road and could not earn less than 0 points due to speed penalties. Implementing

the cost function in this manner e↵ectively reinforced the cost, since more successful trials

were linked not only to increased points and therefore increased monetary reward, but also

decreased experiment time.

Figure 3.2: iPad Application Screen View.

The subjects pressed the red start button to begin each trial (and were asked to not press

the stop button during any trial). The time and velocity of the car was provided in the

upper left hand corner of the screen. The three regions of speed are labeled in the figure

with circles. Region 1 produced acceleration to maximum speed of 1100 pixels/sec; region 2

decelerated the car to 550 pixels/sec; region 3 immediately stopped the car to 2 pixels/sec.

Cost functions: (A) symmetric low-cost, (B) asymmetric, (C) symmetric high-cost.

In addition to inherent motor variability, uncertainty was artificially enhanced by cor-
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rupting the responses of the subject with random, Gaussian-distributed horizontal perturba-

tions at a frequency of 30Hz (the same frequency as the screen updates). Within the context

of this study we will define this imposed variability as motor noise. The e↵ect was similar

to the sensation of driving on a bumpy road; the subject was able to determine the present

car position, but was uncertain exactly where they may be in the next instant. Thus the

e↵ect of the motor noise was to increase uncertainty of future position and alter the proba-

bility of failure. It is important to note, however, that this is not identical to driving on a

bumpy road, where noise is dependent on position on the road. The noise was generated at

a constant time interval so that slowing down would not make the task significantly easier.

There were five levels of imposed motor noise: 0 (no additional noise), 4, 8, 12, and 16 pixels

standard deviation (psd). Each trial was 30,000 pixels in length and took approximately

30 to 60 seconds to complete. The first 10,000 pixels of each trial were practice, giving the

subject enough time to get up to speed and adjust to the noise level, during which no points

were accumulated or lost. The car always started a trial where it ended in the previous,

unless it was the first trial of a block, then the car started in the middle of the road. The

road was 500 pixels wide, the center dashed line was 15 pixels wide, and the car width was

40 pixels. The curves of the road were generated using Bezier curves (Farin, 1997) with

random anchor points derived from a uniform distribution.

During the experiment, subjects’ responses were tested to three cost functions, blocked

into two sets of trials: block A) the symmetric low-cost and block B) the asymmetric and

symmetric high-cost. In block A, subjects completed a random sequence of the 5 uncertainty

levels 3 times, for a total of 15 trials using the cost function as described above (grass on both

sides). During block B, water replaced the grass on one or both sides of the road respectively.

Running into the water caused an immediate stop and replaced the car to the center of the

road (the timer was stopped so that this was equivalent with respect to time to running into

the grass), but with an additional 500-point penalty. In environments with water there were

only 4 degrees of additive noise (0, 4, 8, and 12 psd) as during pilot testing the highest noise
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level caused subjects to generally earn very negative points and discouraged subjects from

heeding the point system. Therefore, in order to maintain a high sensitivity to risk, we did

not include a noise level of 15 psd in environments with water. Each noise level was repeated

twice with water on both sides and twice with water on one side (counter-balanced) for a

total of 16 trials in a pseudo-random sequence.

Each subject first learned control of the car in the low-cost environment during 15

practice trials (same as block A). Each subject was informed that driving on the black part

of the road would yield maximum velocity, while touching the white center lane would cause

the car to slow down and hitting the side of the road would bring the car to a stop. Subjects

were also told that they could earn a maximum of 100 points per trial and were encouraged

to explore the road during the practice block during which points earned or lost would

not count towards their monetary reward. After finishing the practice block and brief rest,

subjects then completed block A and block B in random order with rest in between.

Data Analysis

During the experiment, we recorded position of the car and the time it took to complete

each trial. Points were recorded, but not used in analysis as they were rounded, and therefore

less accurate, and only piecewise proportional (subjects could not earn less than 0 points

from speed penalties). Trial time did not reflect the e↵ects of falling into the water, but only

one subject incurred this penalty.

All analysis was done in MATLAB (version 7.13.0.564. Natick, Massachusetts: The

MathWorks Inc., 2011) and R: A Language and Environment for Statistical Computing (ver-

sion 3.0.1. Vienna, Austria: R Development Core Team, 2013). Position data for subjects

was pooled to represent average behavior of the sample population and fit to equation 1

using maximum likelihood estimation. In these functions, zero is center of the road and

units are in pixels.
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, and p, were interpolated (using cubic spline interpolation) across motor noise to

generate estimated continuous position probability distributions for each cost function.

Additionally, the position data for each subject, for each cost function at each noise

level were fit to equation 1 using maximum likelihood estimation. In order to quantify the

average distance from the center of the road that subjects attempted to maintain for each

condition, the absolute value of µ
1

and µ

2

were weighted by the area under each Gaussian,

p and p-1, and summed. Linear regressions were fit to the means across subjects of the four

lowest levels of motor noise of each task condition.

A two-way ANOVA was performed using the aov function of the R statistical computing

environment. The R model aov(Position Uncertainty * Task) was used to test the di↵erences

in distance from the center of the road between the level of motor noise and task type. In this

model, uncertainty is the quantifiable level of simulated motor noise imposed, and task was

the type of environmental cost function. Post hoc pairwise comparisons were made between

each of the three cost functions within each uncertainty level using paired-t tests with an

alpha value of 0.05.

A two-way repeated measures ANOVA was also performed to test the di↵erences in

trial time between the level of motor noise and task type. The test was performed in R using

the model aov(Time ⇠ Uncertainty * Task + Error(Subject)). Again, paired-t tests were

used to make post hoc pairwise comparisons of the di↵erence between each of the three cost

functions within each uncertainty level.
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We were also interested in the role that errors played in forming behavior. Therefore,

the percentage of failed trials, trials in which the subject went outside the road, was cal-

culated for each level of motor noise of the low-cost task and asymmetric task. (It is not

presented for the symmetric high-cost task, because only one such failure occurred amongst

all subjects in this environment.)

3.1.3 Results

In order to quantify any learning e↵ect within the course of the experiment, distance

from the center of the road for each condition from subjects who completed block A first were

compared with those of subjects who completed block B first. They were not significantly

di↵erent (p < 0.05), therefore it was concluded that after the initial practice trials, there

was no observable learning e↵ect. As expected, position data resemble bimodal Gaussian

distributions as shown in figure 3.3. As motor noise increases, the two peaks of the dis-

tribution tend toward each other, merging into a single normal distribution at high motor

uncertainty. Essentially, subjects reacted accordingly to motor noise; they stayed within a

lane at low levels of uncertainty and moved toward the center of the road at high levels

of uncertainty, illustrated in figure 3.4. This reflects a tradeo↵ in which they accept the

higher cost of driving on the median in order to avoid the risk of driving o↵ the road. In the

asymmetric risk environment, position data appropriately reflects the asymmetric cost with

highly disproportionate peaks, so that subjects have a strong tendency to drive on the side

of the road that is farthest from the water. However, as the noise increases, subjects drive

closer to the middle of the road and thus closer to the water in order to balance the risk of

falling to either side. Table 1 contains the percentage of time that subjects spent in the lane

near the grass (away from the water) during this task.
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Standard Deviation of Motor Noise (in pixels) 0 4 8 12

Percentage of Time Spent in Lane Away From Water 96.12% 96.23% 91.53% 88.87%

Table 3.1: Percentage of Time Spent in Lane Farthest From Water in the Asym-

metric Cost Environment.

Subjects spent significantly more time in the lane opposite of the water. The increase in

percentage of time with increased motor noise can be attributed to subjects moving closer

to the center of the road to avoid hitting the grass. As they moved toward the center of the

road, they crossed the centerline into the lane adjacent to the water more often, albeit still

briefly.

Figure 3.3: Raw Population position data.

Plots are the histograms of the pooled subject data for each task type (by row) and un-

certainty level (by column). The dashed lines are the kernel densities of the data and the

solid lines are the bimodal Gaussian fits (see methods). Green lines represent the position

Gaussian near grass (low-cost) while blue represents a position peak near water (high cost).

In the asymmetric task, the bottom row, it can be seen that subjects maintained a position

far away from the side with water. The x-axis represents the position of the center of the car

on the road in pixels. (The road is 500 pixels wide, and the car is 40 pixels, so the subject

ran o↵ the road at ±230 pixels.) These images depict a trend similar to figure 3.1. As the

outer boundary costs increased, the subjects moved toward the center of the road. Similarly,

as the standard deviation of uncertainty increased, subjects also moved toward the center of

the road.



45

Figure 3.4: Continuous Position Probability Distribution as a Function of Uncer-

tainty.

Variables of bimodal Gaussian fits (µ
1

, µ
2

, �
1

, �
2

, and p) from figure 3.3 were interpolated

(using cubic spline interpolation) across noise levels. This demonstrates an estimate of the

probability of where on the road a subject will be at any given instant as a function of motor

noise.

Over the four lowest levels of uncertainty, subjects took an average of 26.69 seconds

to complete a trial in the symmetric low-cost environment, 28.51 seconds in the asymmetric

environment, and 30.30 seconds in the symmetric high-cost environment. A two-way re-

peated measures ANOVA showed that there was a significant e↵ect of motor noise [F(4,408)

= 102.469, p < 0.001], task type [F(2,408) = 43.892, p < 0.001], and interaction [F(6,408) =

6.417, p < 0.001] on the time it took to complete a trial. This is not especially informative

since the implemented cost function directly a↵ects trial completion time; increased motor

noise will lead to larger trial times regardless of how the subject responds. The more inter-

esting conclusions lie in the post hoc pairwise comparisons between task types at equal levels

of uncertainty. Of the twelve comparisons, all pairs except one were significantly di↵erent

(p < 0.05), the symmetric low-cost task and the asymmetric task at 4 psd motor noise. In

other words when risk was introduced into the environment, subjects sacrificed time and

points to steer clear of the high cost regions, shown in figure 3.2. Comparing the symmetric

tasks, there is a shift in the y-intercept of the regressions, but the slopes are almost identi-

cal. This indicates that there is a constant e↵ect of the increased cost on subjects’ responses

independent of motor noise (at least within this range).
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Figure 3.5: Regression on the Distance from the Center of the Road Subjects

Maintained vs. Level of Motor Noise.

Points indicate the mean distance from the center of the road of all subjects derived from

the peaks of the fitted probability density functions (see methods) for each task type and

uncertainty level. As motor noise increased, subjects’ position shifted proportionally toward

the center of the road. Position is normalized to 250 pixels so 0 is the center of the road

and 1 is the edge of the road. Errors bars indicate the standard error of subjects. Solid lines

represent the linear regressions fit for each task type. Asterisks indicate the pairs of values

with insignificant di↵erences.

The mean distance from the center of the road, calculated from the parameters fit

to eq. 1 as explained in methods, for each condition can be seen in figure 3.6. Over the

four lowest levels of uncertainty, the mean distance from the center of the road (normalized

to the road width) was 0.3408 (SE ±.0157) for the symmetrical low-cost task, 0.3962 (SE

.0108) for the asymmetrical task, and 0.2110 (SE ±.0178) for the symmetrical high-cost task.

Linear regressions demonstrate a linear dependency of distance from the center of the road

on uncertainty level [R2 (symmetrical low-cost task) = 0.982, R2 (symmetrical high-cost

task) = 0.984, R2 (asymmetrical task) = 0.945]. A two-way ANOVA showed that there

was a significant e↵ect of motor noise [F(4,408) = 92.64, p < 0.001], task type [F(2,408)
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= 112.61, p < 0.001], and interaction [F(6,408) = 4.157, p < 0.001] on the distance of

the bimodal Gaussian position distribution peaks from the center of the road. In post hoc

pairwise comparisons between task types within each uncertainty level, all were significant

(p < 0.05) except between the symmetric low-cost task and asymmetric task at 0 and 4 psd

noise. Details can be found in figure 3.6.

Figure 3.6: Proportional Hazard Model of Successful Trials.

Points indicate total percentage of successful trials for all subjects at each level of uncertainty,

where a successful trial is defined as a trial during which the subject never ran o↵ the road.

(The green line represents the symmetric low-cost task, the black line is the asymmetric

task, and the blue line indicates the symmetric high-cost task.) At all uncertainty levels,

failed trials occurred more than twice as often in the asymmetric task than in the low-cost

task. That is that subjects stayed so far away from the water that they hit the grass on the

opposite side of the road much more frequently.

Subjects, on average, ran o↵ the road in more than twice as many trials at every

level of uncertainty in the asymmetric task than in the low-cost task, shown in Figure 3.6.

These numbers do not include failures during practice. However, at the two lowest levels

of motor noise in the low-cost task, even during the initial practice block, no subject ran
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o↵ the road. Additionally, only one subject ever fell o↵ the road in the high-cost task.

This demonstrates that subjects react to the probability of failure even when failure has not

been experienced. This observation is inconsistent with an adaptive reduction in error, and

instead must represent a mechanism that estimates and predicts failure that has not yet

occurred.

3.1.4 Discussion

It has been previously suggested that humans act as Bayes optimal observers in motor

planning tasks, such as rapid pointing, by modifying behavior to compensate for uncertainty

(Faisal andWolpert, 2009; Kording andWolpert, 2004; Kording andWolpert, 2006; Knill and

Pouget, 2004; Maloney and Zhang, 2010; Tassinari et al., 2006; Wolpert and Landy 2012) In

this study we were interested in investigating if this behavior extended to response to cost and

uncertainty in a continuous task controlled with feedback, and if this behavior could be done

without experiencing error in the task. At no additional motor noise, subjects on average

maintained a bimodal Gaussian distribution near the center of either lane (approximately

10 pixels closer to the center line than the road boundary) in the low-cost environment.

This shows that qualitatively optimal behavior could be performed with a bimodal cost

function that is more complicated than the single target used in most prior studies. In

the asymmetric environment, subjects stayed in the lane closer to the grass more than 95%

of the time, and subsequently treated this lane almost identically to the low-cost task. In

the symmetric high-cost environment, subjects moved more than an additional 20 pixels

towards the center of the road compared to the symmetrical low-cost environment at equal

uncertainty levels. Subjects shifted their behavior in the presence of risk even though no

subject left the boundaries of the road in the symmetrical low-cost task at 0 and 4 psd

motor noise. Based on the observation of error, there is in fact no reason to pull away from

the side of the road when the cost to running o↵ the road was increased. This behavior is

either suboptimal or optimal with respect to an internally derived cost function that does not
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match the empirical data. This suggests that predictions of failure not only carry very long

tails, but predict possible error even when none has previously occurred. Additionally, only

one subject ever fell into the water, but every subject still demonstrated a significant shift

in behavior in the symmetric high-cost environment. This is significant since the common

model for learning in motor control is error-driven learning, and this observation suggests

that human performance is often not driven by errors. This demonstrates that subjects made

predictions of both the likelihood and cost of failure, and our results are consistent with the

existence of internal estimates of probability of failure and cost of failure.

As the uncertainty increased, subjects adjusted their position more towards the center

of the road. The distance subjects moved away from the road boundary was dependent on the

motor noise at least within the constraints of this task. While subjects behaved similarly in

the asymmetric task to the symmetrical low cost-task at low levels of uncertainty, subjects

adjusted their behavior di↵erently at high levels of uncertainty. Subjects did not move

towards the center of the road as much in the asymmetric task in order to avoid running

over the centerline and into the high-cost region (water) on the opposite side. This occurred

even though it caused subjects to hit the low-cost region (grass) much more often and meant

taking significantly longer to complete the asymmetric task at the highest noise level than

either of the other two tasks, see figure 3.5. However, since only one subject ever hit the water

in any symmetrical high-cost environment, this again demonstrates that for most subjects

this shift in behavior was not necessary and shows how sensitive humans are to high-risk

regions.

It is important to recognize that the concept of risk we describe in this paper, “risk-

awareness”, is derived from risk-aware control and a fundamentally di↵erent concept than the

more ubiquitous “risk-sensitivity” originating from an economical decision-making perspec-

tive of motor control (Braun et al, 2011; Sanger, 2014). Risk-sensitivity is used to describe

inter-individual di↵erences in response to risk, where risk is defined in terms of higher mo-

ments of reward. In this experiment, an explicit cost function is provided so there should not
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be much inter-individual di↵erence. In the context of this paper we are defining awareness

of risk as continuous estimates of both the cost of failure and probability of failure in a

task. Unlike previous studies, we did not compare subjects’ responses to the “optimal” re-

sponse. It has already been demonstrated that in navigating 2-dimensional terrains humans’

behavior is typically suboptimal (Zhang et al, 2010). It is certainly feasible to create a cost

function su�ciently obscure or complicated to prevent humans from responding optimally.

And there are many other considerations such as attention, fatigue, motivation, etc. that

are impossible to quantify and implement in the estimation model, but that certainly a↵ect

the complete cost function a subject would theoretically minimize. Additionally, the results

suggest that subjects are tuning their behavior to a probability function that is a result of

both pre-existing assumptions about variability and measurements of the empiric variability

of the task. Because we do not know the assumptions a subject makes of the underlying

probability distribution, whether subjects are maximizing expected utility correctly and the

appropriateness of the assumptions are not completely discernible with this study. It can be

concluded, however, that subjects are responding to the increase of risk in the task. So it

was not the focus of this study to determine how closely humans are able to reproduce the

optimal response in continuous tasks, but whether they demonstrate on-going awareness of

risk.

Humans are relatively fragile creatures. Only through constant vigilance and avoidance

of risk do we remain safe from injury. We have shown that not only do we consider risk when

initially planning a movement, but also that we are constantly evaluating the environmental

cost function. Moreover, we are constantly making predictions of failure, even in cases where

we have never experienced that failure. Our survival depends on knowing that falling o↵ the

cli↵ is going to be unpleasant without having to experience it first.
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3.2 Experiment 2: Certainty Equivalence Assumption

3.2.1 Introduction

The previous study demonstrated that subjects continuous estimate their own uncer-

tainty and appropriately tune their behavior to account for this uncertainty. The previous

experiment imposed motor uncertainty, so that the imposed noise specifically a↵ected the

outcome of actions. However, uncertainty can generally exist in two forms: uncertainty in

the state variables and uncertainty in the control variables. The former can be interpreted as

sensory uncertainty (indeterminate knowledge of state) and the latter as motor uncertainty

(indeterminate knowledge of the outcome of actions).

In the theory, state uncertainty and control uncertainty will have identical outcomes if

the statistics of the uncertainties are equivalent. However, it is possible that the perception

of these di↵erent types of uncertainty may a↵ect the accuracy of their internal representation.

The final segment of this report will revisit the role of uncertainty in behavior, and more

specifically investigate the influence of the both of these types of uncertainty on movement.

3.2.2 Methods

In order to test the validity of the certainty equivalence assumption and compare

responses between uncertainty types, we propose a third experiment expanding on the design

of the first experiment. The same iPad driving simulation will be used as in the first chapter

with a few minor modifications. Instead of physically slowing the car on the road, the cost

function will be directly implemented by a point penalty (otherwise the subject may be able

to infer the position of the car on the road from the velocity of the car). In addition to

imposed motor uncertainty, identical to that from the previous experiment, subjects will

complete the task with imposed sensory uncertainty as well, shown in 3.7(c-d).
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Figure 3.7: Application Images.

The above images depict the road for each of the conditions. Figure (a) shows the low-

risk motor condition, (b) shows the high-risk motor condition, (c) shows the low-risk visual

condition, and (d) shows the high-risk visual condition. The visual contrast of these images

is 0.25.

In order to implement sensory uncertainty, the contrast between the road and bound-

ary (both outside the road and the center dashed line) was varied and then the image was

be converted to 2-bit. In order to achieve this, the grayscale value of each pixel was pro-

portional to the probability of that being black (versus white). Each pixel will be compared

to an independent random variable and will be assigned a value (white or black) based on

this comparison. For a single image, this is an implementation of random dithering that

generates a one bit-per-pixel image from the original analog image. It may be important

to recognize that this method does not increase the noise of an image so much as decrease

the bandwidth or information of the image. We characterized and validated this method of

imposing sensory uncertainty in section 2.1. The experiment was divided into two days, one

day for calibrating the levels of uncertainty for each subject, and one day to compare the

types of uncertainty.

Session 1: Calibration

The first session was a calibration phase designed to match levels of motor uncertainty

to statistically equivalent levels of sensory uncertainty. In this session, the application was

similar to the previous experiment, but the cost function was altered. The subject was
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rewarded points for driving on the dashed centerline, and there were no penalty regions.

Subjects were not given any instantaneous feedback of performance, but were given a score

from 0 to 100 at the end of each trial. The car velocity will not be altered in this experiment

because this would indicate whether the car was on the road.

The contrast levels were chosen such that at the highest uncertainty, the road was

essentially invisible to test subjects, and at the lowest level of uncertainty, the road was

completely and easily visible. The levels were spaced logarithmically, so that there was finer

di↵erentiation at lower levels of contrast where visibility changes more rapidly. The motor

uncertainty levels were evenly spaced from 0 pixel standard deviation to 14.5 pixels standard

deviation (based on the results of the first experiment).

Subjects performed 3 blocks of 10 uncertainty levels under imposed motor uncertainty

and the same number of trials under imposed sensory uncertainty. In one block the uncer-

tainty went from high to low, in another the uncertainty went from low to high, and one

block was randomized. The subjects performed these blocks in a random order. Prior to

starting any trials, the subject completed one practice block identical to the increasing motor

uncertainty block and one block of the increasing sensory uncertainty.

The position data for each trial was fit to a Gaussian distribution. The standard de-

viations of the Gaussian distributions for all trials from the motor uncertainty data was fit

to a linear regression and the standard deviations resulting from the sensory uncertainty

was fit to a decaying exponential. Four equidistant standard deviations of movement were

selected for each subject and the corresponding contrast/noise levels for each standard de-

viation were calculated from the exponential/linear fits. Figure 3.2 illustrates the position

data fit to Gaussian distributions and the standard deviations of the distributions fit to the

regressions of one exemplary subject.

The four levels of sensory uncertainty and four levels of motor uncertainty from this

calibration session were used in the second session. Any subject that had an R2 value for

either fit that was less than 0.8 was not included in the second session.
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Figure 3.8: Results of Exemplary Subject For Calibration Session.

These figures are the results from the calibration session of one exemplary subject. The plots

on the left are the results of the motor uncertainty and the plots of the right are from the

visual uncertainty trials. Each figure on the bottom shows the histograms of the position

data (distance from the center of the road) normalized by the road width. The numbers

within each subplot indicate the level of noise of those trials. The blue lines represent the

Gaussian fit for each histogram. The top plots show the standard deviation of the Gaussian

fits and the levels of calibration. The circles represent the standard deviation from each

trial. The black line indicates the linear/exponential fit to the standard deviations. The

stars indicate the selected levels of standard deviation. The dotted and dashed lines show

the conversion between standard deviation of uncertainty and level of motor/contrast noise.

The numbers within in each plot indicate the R2 value of that regression.

Session 2: Complicated Cost Function

In the second session, subjects completed the same game with the cost function from

first study (a bimodal cost function). The levels of uncertainty were those established in
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the calibration from the first session. The blocks were divided into high-risk and low-risk.

In the low-risk task, subjects lost 5 points/second when the car was touching the centerline

and 50 points/second at the boundary. In the high-risk task, subjects also lost an additional

300 points if they hit the outer boundary. Each block consisted of 12 trials, 3 for each level

of uncertainty in a randomized order. At the beginning of the experiment, each subject

completed a practice block identical to the low-risk block for both types of uncertainty. Ad-

ditionally, the first third of each trial was practice for the subject to adjust to the uncertainty.

Subjects

Fifteens subjects participated in the first session of the experiment. Of these, nine

subjects did not meet the calibration criterion to participate in the second session.

Data Analysis

Data was analyzed in a similar manner as the previous experiment. The position data

from the second session was fit to a bimodal Gaussian distribution, eq. 3.1. The distance from

the center of the road was calculated as the absolute value of the peak of each distribution

multiplied by the weighting factor of that distribution added together. This was computed

for each condition for each subject individually. An ANOVA was performed comparing the

e↵ect of uncertainty type, uncertainty level, and risk on the distance from the center of the

road.

3.2.3 Results

All Gaussian fits from the calibration session data passed a chi-squared test. Results

from the first session for a sample subject can be seen in figure 3.8. All the linear and

exponential fits to the standard deviation for each subject were 0.8 or greater. The average

R2 value resulting from the motor data regression was .8338 and the average of all subjects
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for the exponential fit to the visual uncertainty data was .8854. The average motor noise

levels were 1.63, 4.97, 8.31, and 11.66 pixels standard deviation and the contrast values were

0.2541, 0.0941, 0.0635, and 0.0457.

Figure 3.9: Histograms of Raw Position Data and Fits to Bimodal Distribution.

The figure above display the histograms of the position data from all subjects combined.

The position data is referenced to the center of the road and normalized by the size of the

road. Therefore the left boundary of the plot signifies the left boundary of the right and the

right boundary of the plots signify the right boundary of the road. The solid lines indicate

the bimodal Gaussian fits to equation 3.1. The top set of figures are the results of the motor

uncertainty and the bottom set are the results of the visual uncertainty. Each column is the

results from each level of uncertainty, lowest uncertainty on the left and higher towards the

right.

The bimodal Gaussian fits for each condition from all subject data can be seen in

3.9. Qualitatively, the distributions look similar. The average results indicating the distance

from the center of the road for each condition can be seen in figure 3.10. The average

distance for the visual uncertainty (across all levels and risks) is 0.3281 normalized to the

road and the average distance for motor uncertainty is 0.40. The average distance (across all
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uncertainty types and levels) for the symmetric low-risk condition is .3835 and the high-risk

is .3346. There was a significant di↵erence in uncertainty type [F(1,85) = 22.62, p < 0.001],

uncertainty level [F(3,85) = 31.81, p < 0.001], and risk [F(1,85) = 15.13, p < 0.001].

Figure 3.10: Distance from the Center of the Road vs. Uncertainty Level.

The plots above show the distance from the center of the road across uncertainty levels for

the high risk and low risk conditions and the visual and motor uncertainty.The figure on the

left are the results of the average distance from the center of the road calculating from the

bimodal Gaussian fit for each individual subject. The figure on the right are the result of the

bimodal gaussian fit from the total subject data, figure 3.9. The green line represents the

low-risk condition and the blue line represents the high-risk. The stars indicate the visual

uncertainty and the open circle indicates the motor uncertainty. The lines are the fit to a

linear regression. The error bars indicate variance.

3.2.4 Discussion

Results demonstrated that there was a significant increase in sensitivity to sensory

uncertainty over motor uncertainty. It cannot be determined if this is due to a di↵erence

in the manner in which each type of uncertainty is incorporated or if this is a result of an

inaccurate perception of uncertainty.

Interestingly, the results from the motor uncertainty in this experiment appear di↵er-
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ent than in the previous experiment, although the levels of motor noise and risk are similar

in this study. The sensitivity to the risk, both in terms of response to uncertainty and cost,

appears diminished. We hypothesize that this is a consequence of the cost not being rein-

forced by the duration of the experiment. It is possible that subjects consider a lengthier

experiment a significant increase in cost as opposed to just monetary penalty. It is also

possible that the velocity of the car provided instantaneous feedback to reinforce the sensory

estimate of the car position. In this paradigm the subjects did not know when they hit the

middle or the side of the road until the end of each trial.

Certainty Equivalence

It is interesting to note that these results also have major implications about assump-

tions of certainty equivalence. In order to alleviate some amount of the computation burden,

control theories often assume they are controlling a quadratic linear system. This means that

the criterion function is quadratic and that the systems equations are linear. This simpli-

fication relies on many substantial assumptions including local linearity, additive Gaussian

noise, and certainty equivalence (Sanger, 2014).

If a system is certainty equivalent, then the deterministic problem is equivalent to the

stochastic problem (Kendrick, 2002). Therefore, a system in which the optimal solution

taking into account uncertainty is the same as the optimal solution for that system in the

absence of uncertainty is certainty equivalent (Thiel, 1957; Simon, 1956). This is a convenient

assumption as it means the maximum likelihood can be substituted for the probability

distribution. However, the results of this study demonstrate that this is not an appropriate

assumption. In this study, the degree of uncertainty impacts behavior and therefore the

deterministic system is not equivalent to the stochastic problem.



Chapter 4

The Tuning of Reflexes to Risk

4.1 Introduction

In the previous chapter we describe how risk can be interpreted in terms of the prob-

ability of cost and the probability of failure. In general, we do not have control over the

form of the cost function. The cost of failure is determined by the environment. However,

we do have some influence over probability of failure. There are two ways to decrease the

probability of failure. The first is that we may adjust our position to move away from the

risk. From the previous study, we have demonstrated that humans do tune their statistical

behavior based on the entire probability distribution of possible outcomes and the cost func-

tion of environment and task. The second is that we can prepare for the unexpected or plan

for error. We may do this by tuning our rapid responses to the probability of failure and

cost of failure. Therefore, in addition to modifying the control of movement to reflect the

risk of the environment, we hypothesize that humans will also prepare for error in response

to risk as well.

It has been well established that humans are able to modulate the long latency stretch

reflex based on the goal of a task (Ludvig et al, 2007; Pruszynski et al, 2008; Hammond, 1956;

Rothwell et al, 1980; Crago et al, 1976). Studies have implemented a variety of paradigms

including verbal instructions (resist/let go) and target oriented tasks, single muscles and

concurrent muscles. The commonality of all these experiments is that they look very specif-

ically at goal-modulation. It is our hypothesis that awareness to risk is so fundamental, that
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humans also maintain reflexes tuned specifically to the cost function of the environment,

even when the goal of the task does not depend on the perturbation.

In order to appropriately respond to perturbations, the reflex response should take into

account the risk of the environment as well. If we consider the previous example of driving,

it would be very harmful if the reflex response to the mechanical perturbation from a bump

in the road resulted in a reaction that pushed the car over a cli↵. Alternatively, it would be

very helpful if the same reflex response resulted in avoiding hitting another car and running

into another empty lane instead. This chapter consists of three separate, but closely re-

lated, experiments. The first experiment implemented a paradigm similar to the experiment

presented in the previous chapter to investigate the rapid response to visual perturbations.

The second experiment further investigates this phenomenon by examining the stretch reflex

response in the first dorsal interosseus in environments with di↵erent amounts of risk. The

final experiment will repeat the second experiment with minor changes using the bicep and

triceps muscle in order to investigate the role of co-contraction and tone in modulating the

reflex response to risk.

This is an important set of experiments to distinguish characteristics indicative of

risk aware control from optimal feedback control. In optimal feedback control, the reference

trajectory is simply recalculated at each time point depending on the state. This accounts for

redirecting movement not to the previous path, but to the best path to achieve a goal. This

is important because setting reflexes is unnecessary to follow a reference trajectory. However,

when controlling the system through dynamics, tuning reflexes is an inherent result of the

system. This will present itself as planning for error before the error occurs.
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4.2 Experiment 1: Response to Visual Perturbations

4.2.1 Materials and Methods

Apparatus

The experiment was performed on an iPad2 (iOS 6.0, resolution of 1024x740 pixels)

in landscape orientation. A custom application was created using CoronaSDK (Version

2012.11.15. Palo Alto, California: Corona Labs Inc., 2012). The update rate of the screen

and rate of data acquisition was 30 fps.

Subjects

Eight naive, healthy adult subjects participated in this second study. The University

of Southern California Institutional Review Board approved the study protocol. All subjects

gave informed written consent for participation and received compensation in proportion

to their final score plus a base sum (Study IRB# UP 09 00263). Authorization for analy-

sis, storage, and publication of protected health information was obtained according to the

Health Information Portability and Accountability Act (HIPAA).

Stimuli and Procedure

This experiment utilized a very similar experimental set up as in the first study. The

application itself was the same with a few modifications. The length of trial was increased

from approximately 25-35 seconds to 50-60 seconds. Additionally, only 3 levels of motor noise

were evaluated (0, 4, and 8 pixels standard deviation). At random time intervals throughout

each trial, the car was displaced to a new position by visually moving the car from its current

position to a new position in the next frame. There were three types of displacements: push

to edge, push to center, and lane switch, as illustrated in figure 4.1.
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(a) Push to Edge (b) Push to Center (c) Lane Switch

Figure 4.1: Types of Visual Displacements.

Three types of visual perturbations occurred during the experiment. Figure (a) illustrates

the push to edge displacement. The car is moved from its current position to 50 pixels

from the edge of the road in the current driving lane. Figure (b) depicts the push to center

displacement where the car is moved to the very center of the road. Figure (c) shows a lane

switch perturbation. Here the car is moved to the exact same position in the opposite lane.

The experiment was divided into 3 identical blocks with small breaks in between. Each

block was subdivided into 3 sub-blocks for each cost function (grass-grass, water-grass/grass-

water, or water-water). The order of sub-blocks was randomized. Within each sub-block the

subject completed 3 trials, one of each noise level in a random order. During each trial the

car was displaced 9 times, 3 per displacement type, with each displacement occurring at a

random time in the trial but at least 5 seconds apart. This resulted in 9 displacements per

noise level per cost function for a total of 81 visual perturbations throughout the experiment.

Prior to the first block, the subject completed a practice block under the grass-grass cost

function.
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(a) Push to Edge (b) Push to Center (c) Lane Switch

Figure 4.2: Specific Hypotheses.

If reflexes are tuned to the risk of the environment we expect to see di↵erences in responses

depending on the risk. In figure (a) we would expect to see a larger response to pull the car

away from the high risk at the edge of the road. In figure (b) we anticipate that subjects’

response will be less or slower to move away from the smaller risk of the center of the road.

In figure (c) the response should depend on whether the cost function is symmetric or not.

In a symmetric environment the risk is the same in the displaced position so we should see a

much smaller response to the visual perturbation. In an asymmetric environment, we expect

the subject to return to the previous lane.

Data Analysis

Data from the accelerometer was primarily used for analysis since it is the most direct

link to the subjects’ physical reactions to the visual perturbations. Accelerometer responses

were aligned to the direction of perturbation. Then the amplitude of response to each

perturbation was calculated by subtracting the baseline accelerometer reading (averaged

over .5 seconds prior to perturbation onset) from the maximum response. The maximum

was defined as the first maximum accelerometer response (did not decrease for more than

3 consecutive frames) between perturbation onset and 100 frames post perturbation. The

time of the amplitude was also computed as the frame this maximum response occurred.

The percentage of times that the subject returned to the previous lane after the lane

switch perturbation was also analyzed. A trial was considered a return trial if at 100 frames

post perturbation the car position was at least 50 pixels into the opposite lane. For symmetry,

the trials in which the car position was in the same lane and at least 50 pixels from the

centerline 100 frames after the perturbation was considered a same lane trial. All other trials
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were discounted as ambiguous. A trial was also automatically discounted if the subject fell

into the water within those 100 frames. The percentage was calculated as the number of

return trials divided by the sum of the return and same lane trials.

4.2.2 Results

Average accelerometer responses for each subject and the average of all subjects for

the push to edge and push to center perturbations can be seen in figure 4.3. The previous

study already established the generalized response to this task without the perturbations;

therefore this investigation was only interested in specifically analyzing the rapid response

to perturbations. In a three-way repeated-measures ANOVA, perturbation type, noise level,

and cost function all had a significant e↵ect on the response amplitude (p < 0 .0001).

(a) Push to Edge (b) Push to Center

Figure 4.3: Rapid Responses of Individual Subjects and Average of All Subjects.

In each grid the columns signify the level of motor noise (0, 4, 8 psd from left to right)

and the rows characterize the cost function (symmetric low-cost, asymmetric, symmetric

high-cost from top to bottom). Each grid is labeled with the type of visual perturbation (a:

push to edge, b: lane switch, c: push to center). The x-axis is in seconds and the y-axis

is accelerometer data. The grey lines represent individual subject responses (averaged over

the 9 trials). The thick colored lines indicate the average of all subjects’ responses. The

perturbation occurred at frame 50.
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Post hoc comparisons were performed with t-tests to more specifically interpret the

e↵ect of risk on response amplitude. In the push to edge displacements, subjects were either

pushed towards the grass or towards the water depending on the environment. The response

amplitude was significantly greater (p = 0.0028) when the subject was being pushed toward

the water or higher risk than when pushed toward the grass or lower risk, shown in figure 4.4.

Considering now all the environments, the subjects also demonstrated significantly larger (p

< 0.0001) response amplitudes when pushed toward the edge of the road (higher risk) than

towards the center of the road (lower risk), shown in figure 4.5.

Figure 4.4: Amplitude of Average Accelerometer Response to Push to Edge Per-

turbation.

Points represent the average accelerometer response to the push to edge perturbation of all

subjects. Green indicates the symmetric low-cost task and blue indicates the symmetric

high-cost task. The x-axis is the standard deviation of motor uncertainty in pixels and the

y-axis is the accelerometer response. The bars represent standard error. The stars indicate

significantly di↵erent pairs ( * = < 0.05, ** = < 0.005, *** = < 0.0005).



66

Figure 4.5: Amplitude of Average Accelerometer Response of the Push to Edge

and Push to Center Perturbations.

Points represent the average accelerometer response of all subjects in all cost environments

combined. Red indicates the response to the push to edge perturbation and yellow indicates

the push toward center perturbation. The x-axis is the standard deviation of motor uncer-

tainty in pixels and the y-axis is the accelerometer response. The bars represent standard

error. The stars indicate significantly di↵erent pairs ( * = < 0.05, ** = < 0.005, *** = <

0.0005).

In the switch-lane perturbation, the position data is more informative than the ac-

celerometer data, figure 4.6. Optimal feedback control would predict that, in the symmetric

environment, subjects always remain in the new lane post switch lane perturbation because

they recalculate the optimal trajectory. When subjects were pushed to the opposite driving

lane, they generally stayed in that lane. It should be noted that this was not always the

case though, sometimes subjects returned to the previous lane even in the symmetric envi-

ronment. In the asymmetric environment, subjects usually returned to the lane away from

the higher risk. Percentages of the returns can be seen for each condition in figure 4.6.
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Figure 4.6: Position of Car Post Lane Switch Perturbation.

In each grid the columns signify the level of motor noise (0, 4, 8 psd from left to right)

and the rows characterize the cost function (symmetric low-cost, asymmetric, symmetric

high-cost from top to bottom). The x-axis is in frames and the y-axis is center of the car

position data. The red lines indicate trials that the subject returned to the lane the car

was perturbed from. The black lines indicate trials that the subject did not return to the

previous lane. The grey lines designate trials that were deemed ambiguous (see methods).

The numbers above each subplot are the percentage of trials that the subject returned to

the previous lane.

4.2.3 Discussion

Results demonstrate that subjects’ rapid response is modulated to the location of risk

in the environment. Amplitude of response was higher for perturbations that pushed the

subject toward higher risk, in this case toward the edge of the road instead of the center or

toward water instead of toward grass.

This supports our hypothesis that reflex responses are modulated by risk, however,

because the perturbations implemented are visual and not mechanical, these reaction times

exist only in the voluntary region (Thorpe et al., 1996) and are not true reflex responses.
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The next experiments will utilize mechanical perturbations to test the modulation of the

stretch reflex response to environmental risk.
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4.3 Experiment 2: Response to Mechanical Perturbation

4.3.1 Materials and Methods

Subjects

Ten nave, healthy adult subjects participated in this study. The University of South-

ern California Institutional Review Board approved the study protocol. All subjects gave

informed written consent for participation and received compensation in proportion to their

final score plus a base sum (Study IRB# UP 10 00447). Authorization for analysis, stor-

age, and publication of protected health information was obtained according to the Health

Information Portability and Accountability Act (HIPAA).

Stimuli and Procedure

Subjects were positioned in front of a monitor with their entire forearm resting on a

table and their right index finger braced in a splint. The split was attached to the arm of a

robot magnetically, as a safety precaution. The physical arm of the robot was constrained to

move in only one dimension, horizontal to the subject, by a plastic board with a rectangular

section removed. The three distal fingers were taped together and all fingers, besides the

index finger, were attached to the board with Velcro. Electrodes were a�xed to belly of

the first dorsal interosseus and abductor digiti minimi muscles and a ground electrode was

placed on the opposite hand. Figure 4.7c shows this set-up.

The position of the robot arm corresponded to the position of the cursor on the screen.

The monitor displayed three rectangles: two cost regions on either side of a center reward

region, which moved horizontally (remaining equidistant) in a randomized sinusoidal motion.

Subjects were verbally instructed to maximize points by keeping the cursor within the center

reward region while avoiding the cost regions that would result in a loss of points. The

center reward rectangle was twice as wide as the cursor dot so there was not much leeway

in the position of the cursor that would earn points. This ensured that the cursor remained
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approximately equal distance from either cost region. The robot generated a constant 1 N

baseline force with randomized 4 N perturbations in both directions (randomized) at a mean

rate of 3 seconds.

Figure 4.7: Monitor Display and Set Up.

The above images illustrate the display the subjects viewed during the experiment. There

was always the center green reward region while the penalty regions changed throughout

the experiment. The rectangles all moved together in a randomized sinusoidal motion. The

subject’s finger was attached to the robot that controlled the blue cursor on the screen. The

subject’s hand was strapped in using Velcro to avoid using the other fingers or adjusting the

hand position mid-experiment. Electrodes were placed on the FDI and ADM and a ground

electrode was placed on the back of the hand.

The two cost rectangles were colored to indicate penalty. Nine cost environments were

evaluated: all combinations of no penalty, low penalty, and high penalty. No penalty meant

the subject would not lose points when the cursor was inside the (white) cost rectangle,

hitting a yellow rectangle resulted in a loss of 10 points (low penalty) while hitting a red

rectangle resulted in a loss of 100 points (high penalty). Under this paradigm, responses to
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both symmetric and asymmetric cost functions could be investigated.

The experiment was divided into 5 blocks of 90 perturbations. The cost function (cued

by color) was changed every 10 perturbations in randomized order. A mandatory 5-minute

rest period separated each block of trials. Prior to the first block, subjects were instructed to

abduct their index finger against the hand of the experimenter as hard as possible in order

to collect maximum voluntary control.

Ultimately, the goal of the task was always to remain in the center target, but the

cost of hitting a penalty region was varied. If a subject always returned to the center target

as quickly as possible, they would always maximize their points. However, we expected to

still see a di↵erence in the long latency stretch reflex between cost functions as a result of

subjects tuning their reflexes to the risk of environment.

Prior to the beginning of the experiment, subjects were asked to push with as much

force as possible against a stationary object in order to record maximum voluntary control.

Data Analysis

All analysis was done in MATLAB (version 7.13.0.564. Natick, Massachusetts: The

MathWorks Inc., 2011) and R: A Language and Environment for Statistical Computing

(version 3.0.1. Vienna, Austria: R Development Core Team, 2013). Electromyography was

recorded from the first dorsal interosseus and abductor digiti minimi muscles at 1000 Hz.

The abductor digiti minimi was not used for analysis, but observed for a general sense of the

sti↵ness of the hand. The EMG data was low pass filtered [500 Hz], rectified, then bandpass

filtered [25 – 250 Hz, butterworth]. Data was normalized based on maximum voluntary

control (MVC).

Data was time-aligned to perturbation onset. Only trials in the direction that activated

the FDI stretch reflex were analyzed. This resulted in approximately 25 trials per subject

per cost function. Reflex response was divided into standard epochs for baseline [-50 – 0

ms], short latency [R1, 20 – 45 ms], medium latency [R2, 45 – 75 ms], long latency [R3, 75



72

– 105 ms], and voluntary [VOL, 110 – 150 ms] response post perturbation. (From Rapid

Motor Responses Are Appropriate tuned) Analysis compared mean EMG within each epoch

for each perturbation trial.

Subject data was analyzed both individually and as a group. A two-way repeated

measures ANOVA using cost factor and epoch factor was performed to determine the ef-

fect of risk and epoch on the stretch reflex for each individual subject. The R model

aov(EMG Risk*Epoch) was used to determined the e↵ect of the risk of the environment

on the EMG activity.

Five one-way repeated measures ANOVAs were also performed on the entire subject

pool to determine the e↵ect of risk on EMG activity within each epoch (baseline, R1, R2,

R3, and voluntary). The R model was aov(EMG Risk) where the EMG factor was only the

EMG activity in a single epoch. This was performed when the EMG was normalized by

preactivation (100 ms prior to perturbation) instead of MVC as well.

Additionally, the asymmetric cost functions were analyzed in greater detail. The asym-

metric cost functions were categorized by whether the perturbation was in the direction of

overall higher risk or lower risk. Since only trials that activated the FDI reflex were ana-

lyzed, this meant that if the reflex response was greater in conditions with higher risk to the

right than to the left, that the reflexes were tuned according to the location of risk in the

environment. A two-way repeated measures ANOVA was performed on the EMG from the

asymmetric cost functions. The R model was aov(EMG Side*Epoch) where the Side factor

indicated the direction of higher cost. Post hoc pairwise comparisons were made of the e↵ect

of higher risk direction on the EMG activity within each epoch as well.

EMG from one subject did not exhibit a normal stretch reflex response to perturbation.

It is unclear whether the data was accurately reflecting an abnormal response or the result

of error in data collection, but this subject was removed from analysis.
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4.3.2 Results

This experiment was designed to study the e↵ects of the risk on the stretch reflex.

Subjects did not demonstrate di�cultly in performing the task and all subjects appeared to

use the same strategy of staying within the center reward region and attempting to resist

perturbation to avoid risk. We consistently observed a small peak in muscle activity at 50

ms post perturbation and a larger, distinct peak at 85 ms characteristic of the long latency

reflex. Each subject was first analyzed individually. Seven of the nine subjects demonstrated

a significant di↵erence in muscle activity between cost functions (subjects 2, 4, 5, 6, 7, 11, and

13); six of those seven subjects tuned their muscle activity appropriate (generally increased

reflex amplitude in higher risk conditions).

Figure 4.8: Change in EMG Between Conditions for Individual Subjects.

This figure contains the change in average baseline EMG (100ms prior to perturbation) be-

tween the symmetric no-cost/symmetric low-cost (yellow) and symmetric no-cost/symmetric

high-cost (red) for each subject, and figure Aii contains the same for the long latency epoch.

Subject number is located on the x-axis and EMG on the y-axis. Figure B contains the

average EMG trace for all subjects for the symmetric no-cost (green), symmetric low-cost

(yellow), and symmetric high-cost (red) tasks. The dashed black line designates the time of

perturbation and the solid black lines indicate the long latency epoch.
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EMG activity across all subjects was analyzed within each epoch as well. The baseline

epoch showed a significant di↵erence (F(8,1907) = 3.302, p < 0.001), there was no significant

di↵erence in the R1 epoch as expected (F(8,1907) = 1.407, p = 0.189). In the long latency

epochs, R2 and R3, there was a significant di↵erent dependent on cost (F(8,1907) = 2.816,

p=0.00418) and (F(8,1907) = 4.323, p < 0.0001). There was also a significant di↵erence in

the voluntary epoch (F(8,1907) = 4.739, p < 0.0001).

Figure 4.9: Symmetric Cost EMG.

Figure Ai contains the change in average baseline EMG (100ms prior to perturbation) be-

tween the symmetric no-cost/symmetric low-cost (yellow) and symmetric no-cost/symmetric

high-cost (red) for each subject, and figure Aii contains the same for the long latency epoch.

Subject number is located on the x-axis and EMG on the y-axis. Figure B contains the

average EMG trace for all subjects for the symmetric no-cost (green), symmetric low-cost

(yellow), and symmetric high-cost (red) tasks. The dashed black line designates the time of

perturbation and the solid black lines indicate the long latency epoch.

The experimental design included both symmetric and asymmetric cost functions while

the subject did not know the direction of perturbation. Therefore we were able to determine

the degree of specificity of the environmental cost function that the reflex response would

integrate. The asymmetric cost functions were categorized by whether the perturbation was
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in the direction of overall higher risk or lower risk. Since only trials that activated the FDI

reflex were analyzed, this meant that if the reflex response was greater in conditions with

higher risk to the right than to the left, that the reflexes were tuned according to the location

of risk in the environment. However, only five of the nine subjects actually demonstrated

this tuning. As a whole, there was no significant e↵ect of the location of the risk in the

environment (F(1,6492) = 0.735, p = 0.391). A pairwise t-test comparing the asymmetric

cost direction within the long latency epoch only did not exhibit a significant di↵erence

(p=.184).

Figure 4.10: Asymmetric Cost EMG.

Figure Ai contains the change in average baseline EMG (100ms prior to perturbation) be-

tween the no-cost condition and asymmetric cost conditions; yellow indicates the conditions

with perturbations in the direction of lower cost and red represents the perturbations in the

direction of higher cost. Figure Aii contains the same for the long latency epoch. Subject

number is located on the x-axis and EMG on the y-axis. Figure B contains the average EMG

trace for all subjects for perturbations towards lower cost (yellow) and perturbations toward

higher cost (red). The dashed black line designates the time of perturbation and the solid

black lines indicate the long latency epoch.

In the previous analysis, the EMG was normalized by maximum voluntary control. If

the EMG is instead normalized by muscle preactivation, there is no longer a clear signifi-
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cant di↵erence in EMG activation between risk environments. None of the epochs show a

significant di↵erence, including the voluntary epoch, R1: (F(8,1907) = 0.327, p = 0.956),

R2: (F(8,1907) = 1.074, p = 0.378), R3: (F(8,1907) = 0.73, p = 0.665), Vol: (F(8,1907) =

0.974, p = 0.454).

Figure 4.11: EMG Normalized by Maximum Voluntary Contraction and by Pre-

activation.

Figure Ai contains the change in average baseline EMG (100ms prior to perturbation) be-

tween the no-cost condition and asymmetric cost conditions; yellow indicates the conditions

with perturbations in the direction of lower cost and red represents the perturbations in the

direction of higher cost. Figure Aii contains the same for the long latency epoch. Subject

number is located on the x-axis and EMG on the y-axis. Figure B contains the average EMG

trace for all subjects for perturbations towards lower cost (yellow) and perturbations toward

higher cost (red). The dashed black line designates the time of perturbation and the solid

black lines indicate the long latency epoch.

4.3.3 Discussion

This experiment was designed such that the goal of task remained the same through the

experiment and did not depend on the perturbation. Therefore, if the subject had performed

their best on every trial, they would have received as many points as it was possible for them
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to get. However, most of the subjects still demonstrated appropriate modulation of the long

latency reflex to the risk in the environment. Across all subjects combined, a significant

di↵erence was found in the long latency epoch between cost functions when the muscle

activity was normalized based on maximum voluntary control. This suggests that humans

to tune their long latency reflexes to the risk of the environment. However, there was not

a significant di↵erence between cost functions that pushed toward higher cost versus away

from higher cost. This suggests that subject do not set separate reflex responses for di↵erent

locations of risk simultaneously when the direction of perturbation was unplanned.

The results were also analyzed with the EMG normalized by preactivation instead

of maximum voluntary control. Under this adjustment, there was no longer a significant

di↵erence in the muscle activity within any epoch. This suggests that muscle preactivation

may be an essential component to modulating the reflex response to risk. Pruszynski et

al. provide evidence that the long latency reflex may be composed of two functionally

distinct components (Pruszynski et al, 2011). One that is modulated by the goal of the task

independent of tone, and another that is sensitive to muscle preactivation. It is possible that

the goal of the task predominantly modulates the first component of the long latency reflex

and the risk of the environment primarily modulates this second preactivation dependent

component.

The evidence that sti↵ness was a↵ected by the risk of the environment indicates that

subjects were planning for error prior to the perturbation. This is not represented in optimal

feedback control. In optimal feedback control, the reference trajectory is recalculated at each

time point depending on the current state. This accounts for redirecting movement not to

the previous path, but to the best path to achieve a goal. In the case of this experiment, that

would be toward the center target and away from the cost once the perturbation occurred.

However, the results demonstrate not just that subjects redirected their goal appropriately

post perturbation, but also planned for that error prior to its occurrence.

It is problematic to draw more specific conclusions about the role of co-contraction in
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this study since the muscle antagonist to the FDI cannot be measured reliably with surface

electrodes. Therefore, the final experiment in this chapter will repeat this experimental

design using the bicep and triceps muscle. This will provide an opportunity to investigate

more deeply the role of sti↵ness in tuning the reflex response to the risk of the environment.
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4.4 Experiment 3: Role of Cocontraction in Tuning Reflexes

4.4.1 Introduction

The final study in this series of experiments was designed to validate the results of

the previous experiment and specifically look more closely at the role of co-contraction in

modulating the stretch reflex to risk. It is well understood that co-contraction will act as

a gain on the reflex response (Akawaza et al., 1983; Lewis et al., 2010). It is possible that

humans tune their stretch reflex to risk only by modulating their tone or muscle sti↵ness.

In fact, sti↵ness likely has a large role to play in modulating reflexes of an unpracticed task.

An example of this is walking on a balance beam. It is expected that the average person will

experience no di�culty walking in a straight line on a rigid balance beam planted firmly on

the floor. However, lift that balance beam a hundred feet into the air and most people will

change the way they move across it, often in a disadvantageous manner. This is as the cliche

”scared sti↵” suggests, due at least in part to changes in muscle tone in response to danger.

However, modifying sti↵ness may not be the only manner in which humans tune reflexes

to risk. It is possible that we tune reflexes independent of tone as well. The previous study

established that reflexes are tuned to the risk, however the results were not particularly

clear, especially in regards to sti↵ness. Therefore, the experiment was repeated in the bicep

muscle. The paradigm was very similar to the previous experiment, but EMG from both the

agonist and antagonist muscles were recorded.

4.4.2 Materials and Methods

Subjects

Ten subjects, 7 males and 3 females, participated in this experiment. Other than stan-

dard inclusion criteria for a normal subject, each subject also had to be strong enough to

complete the majority of the experiment.
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Stimuli and Procedure

In this experiment, subjects were positioned in front of a monitor with their right arm

strapped to a manipulandum designed to apply torque at the elbow joint while maintaining

all other arm joints immobile. The subject’s hand gripped a rigid joystick attached to the

arm of the manipulandum that controlled a cursor horizontally on the screen. The display

provided to the subjects was identical to the previous experiment, 4.7a. The only change was

that the rectangles were stationary in order to measure the co-contraction more accurately.

Electrodes were placed on the bicep and triceps muscles and a ground electrode was placed

on the surface of the opposite hand. The figures below portray the manipulandum and

physical set-up of the experiment.

Figure 4.12: Manipulandum Set-Up

The figures above show the setup of the manipulandum and the position of the arm. The

subject’s arm was strapped to the robot that controlled the blue cursor on the screen. The

elbow joint was positioned directly over the robot joint exerting the perturbation torque.

Electrodes were placed on the bicep and triceps muscles.

The baseline force and the perturbation force were the same between subjects in order

to compare reflexes between subjects. However, the strength of each subject influenced the

ability of the subject to perform the task. To account for the di↵erence in strength between
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subjects, the scaling factor between the displacement of the robot and the displacement

of the screen cursor was calibrated to each subject. Prior to the start of the described

experiment, subjects completed a short calibration phase. They were presented with the

same screen with no penalty regions and were asked to withstand the force of the perturbation

as much as possible. There were ten perturbations, five in each direction, for the calibration.

The maximum point the robot reached in response to each perturbation was recorded and

averaged for all perturbations. The scaling factor was calculated so that the distance between

the reward region and each penalty region was 90% of this value. Still, the strength of the

subject a↵ected their ability to perform the task. The stronger subjects never hit a single

penalty region while some of the weaker subjects hit a penalty region on more than 25% of

the trials.

The experiment was divided into two sessions to take place on separate days in order

to minimize the e↵ect of fatigue. Each session consisted of six blocks of 45 perturbations.

The presented cost was randomly changed every 5 perturbations and the direction of the

perturbation was random. Not all subjects were able to complete all the blocks due to fa-

tigue, so subjects were given the option to stop the experiment once they felt they could no

longer continue. Approximately half the subjects did not complete the full experiment, but

all subjects included in the analysis completed more than half of the total trials.

Data Analysis

Results were analyzed in a similar manner as the previous experiment. Only trials in

the direction that activated the bicep stretch reflex were analyzed. Therefore, there were

approximately 30 trials analyzed for each condition for each subject that completed the full

experiment. EMG was divided into baseline [-50 – 0 ms], short latency [0 – 50 ms], long

latency [50 – 105 ms], and voluntary [105 – 150 ms] epochs. The EMG data was low pass

filtered [500 Hz], full-wave rectified, then bandpass filtered [25 – 250 Hz, butterworth].

Statistics were done using the mean of the EMG within each epoch. In order to
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account for fatigue, EMG was normalized by the average of the maximum EMG (from -50 –

150 ms) from all trials in the same direction within each block (i.e. each block had its own

normalization factor). The analysis was repeated with the EMG normalized by baseline as

well in order to determine the amount of risk modulation performed by adjusting muscle

tone. Refer to section 4.3.1 for more details on data analysis details.

4.4.3 Results

Five of the ten subjects significantly tuned their long latency reflex based on the risk

of the environment (p < 0.05). Four of these five subjects appropriately tuned their reflexes,

so that their reflex response was generally higher for higher risk. Although not significant,

several other subjects still demonstrated increased reflex response in environments with

increased risk. Figure 4.13 shows the average change in EMG between risk conditions for

each subject.

Figure 4.13: Individual Subject EMG

The figures above show the average change in EMG between the no cost condition and each

other condition for each subject. The top panel shows the EMG from the baseline epoch and

the bottom panel shows the long latency epoch. Stars indicate subjects whose long latency

reflex was significantly di↵erent with respect to risk (p < 0.05).
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Figure 4.14: Reflex Response to Symmetric Risk.

The plot on the right shows the average EMG trace for the symmetric cost conditions. The

red line indicates the EMG response to the highest symmetric risk (high cost-high cost),

the yellow line indicates the response to the low symmetric risk (low cost-low cost), and

the green line represents the response to the no cost condition (no cost-no cost). The bar

plot indicates the average di↵erence in EMG between the symmetric high risk/symmetric

no cost (red) and the di↵erence between the symmetric low risk/symmetric no cost (yellow).

Subject number is indicated on the x-axis.

In the symmetric risk conditions, a repeated-measures ANOVA indicated there was a

significant e↵ect of risk on the long latency epoch (F(2,635) = 23.35, p < 0.001). There was

also a significant di↵erence within the baseline epoch (F(2,635) = 4.636, p < 0.01). The

maximum of the peak in the long latency epoch was 11.93 for the symmetric high-risk, 10.75

for the symmetric low-risk, and 6.95 for the symmetric no-risk. This is a large di↵erence in

response since the amplitude of the highest risk was almost twice that of the lowest risk.

In the asymmetric condition, the overall cumulative risk was the same, but the risk is

the direction of the perturbation was considered. The results of the change in the baseline and

long latency epoch for each subject for each cumulative risk can be seen in figure 4.15(a).

The trace depicting the average response towards higher risk in the asymmetric costs vs

towards lower cost can be seen in 4.15b. There is a significant di↵erence (F(1,1286) = 11.17,
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p < 0.001) within subjects for the long latency reflex responses pushing toward higher risk

vs lower risk. There is no significant di↵erence in the baseline (F(1,1286) = .954, p = 0.329),

which we would expect since the baseline should reflect the co-contraction.

Figure 4.15: Reflex Response to Asymmetric Risk.

The plot on the right shows the average EMG trace for the asymmetric cost conditions. The

red line indicates the EMG resulting from perturbations toward higher cost and the yellow

line indicates toward lower cost. The cumulative cost of the conditions are the same, the

only di↵erence is the side of the risk. The bar plot indicates the di↵erence in the average long

latency EMG between the higher risk in the direction of the perturbation and the higher risk

away from the perturbation for the same cumulative cost for each subject. Subject number

is indicated on the x-axis.

The average traces for the cumulative risk was also calculated, figure 4.16(a). Consid-

ering all subjects, an ANOVA assuming risk was numerically equal to the cumulative risk

of the environment showed a significant di↵erence in long latency response between risks

(F(1,3214) = 23.71, p < .001). Additionally, if the risk was assumed numerically equivalent

to the asymmetric risk in the direction of perturbation, there was also a significant di↵er-

ence in long latency response to risk (F(1,3214) = 12.99, p < .001). This indicates that

the modulating of the long latency stretch reflex to risk was most likely a combination of

co-contraction and asymmetric tuning. The traces for the EMG response normalized by the
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baseline of that trial can be seen in 4.16(b). There was a significant di↵erence in the long

latency response overall to risk as well (F(8.1926) = 2.086, p < .05).

Figure 4.16: Average EMG: Normalization.

The lines indicate the average EMG trace for all subjects. The green line indicates the three

lowest cumulative costs (no cost-no cost; low cost-no cost; no cost-low cost), the yellow line

indicates the average of the three middle cumulative costs (low cost-low cost, high cost-no

cost, no cost-high cost), and the red line indicates the average EMG response to the three

highest cumulative costs (high cost-low cost; low cost-high cost; high cost-high cost). In the

left plot, each EMG trace is normalized by the average baseline of that block. In the right

plot, each EMG trace is normalized by the baseline of that EMG trace.

4.4.4 Discussion

We focus on two methods that humans may utilize to modify their stretch reflex in

response to risk. The first is the co-contraction/symmetric hypothesis, in which subjects tune

their reflexes to risk by sti↵ening their joints. If this were the case then subjects would likely

tune a single parameter representing the cumulative risk of the environment. The second

is the asymmetric reflex, which hypothesizes that humans tune their reflexes specifically to

wherever risk lies in the environment. This cannot be done with co-contraction since an

asymmetry in contraction would produce movement. The null hypothesis is that humans
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do not tune their reflexes to risk. These hypothesis are shown in figure 4.17 and can be

compared to subject data in figure 4.13.

Figure 4.17: Hypotheses Visualized.

The figures above illustrate the null hypothesis as well as the asymmetric and co-contraction

hypothesis. Each bar indicates the di↵erence between the no cost condition and each other

condition. This study was designed to determine which of the above hypotheses were valid.

The co-contraction or symmetric hypothesis is that subjects tune their stretch reflex to the

overall or cumulative risk of the environment. The asymmetric hypothesis is that humans

tune their stretch reflex not only to the risk of environment, but more specifically to the

risk in the direction of the perturbation as well. The null hypothesis is that subjects do not

modulate their long latency reflex based on risk.

Response to risk was not uniform for all subjects, however overall subjects did tune their

long latency reflex to risk. It appeared that subjects primarily used sti↵ness to compensate

for risk, however subjects did tune their long latency reflex asymmetrically as well. Subjects

long latency reflex was significantly increased in the direction of higher risk between trials

when the cumulative risk was the same and the direction of perturbation could not be

anticipated. This suggests that sti↵ness is not the only modulator of reflexes in response to

risk since co-contraction is inherently symmetric.

This was not found in the case of the FDI. It is possible that this is a learned behavior

and that some humans are more capable of asymmetric tuning than others. This component

of the response was very variable between subjects. More likely this reflects the physiological

di↵erences between the FDI and bicep reflexes noted by other studies (Thilmann et al., 1991).
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4.5 Chapter Conclusions

In order to keep us safe, risk must play a critical role in shaping movement. The

first chapter demonstrated that both uncertainty and a detailed understanding of the envi-

ronmental cost function modulate feedback-driven behavior in humans. However, if risk is

as influential as we expect, modulation of behavior to risk should be prevalent at all lev-

els of movement. This chapter explored the human reflex response and the role of risk in

modulating this response.

The first step was to survey the very general characteristics of rapid response to pertur-

bations to determine if this was a valid avenue of research. Response to visual perturbation

confirmed an increase in response amplitude when the perturbation increased risk. The next

step was to directly test the stretch reflex response. Many studies have demonstrated that

humans have the ability to modify their long latency reflex depending on the goal of the task

(Ludvig et al, 2007; Pruszynski et al, 2008; Hammond, 1956; Rothwell et al, 1980; Crago et

al, 1976). We were very careful to design an experiment that did not simply repeat these

findings, and instead we attempted to specifically address the role of risk and not the e↵ect

of the goal on the reflex response. While it is true that these two concepts are intimately

linked, in the experiment implemented, the goal of the task remained constant throughout

the entire experiment. If the subject performed their best on every trial, they would have

received maximum points (with respect to that subject). However, results still show a sig-

nificant di↵erence in the long latency reflex response dependent on the level of risk in the

task.

The bicep reflex in particular demonstrated the ability to tune the reflex response using

a combination of both co-contraction and asymmetric tuning. It would be interesting in the

future to see how complicated a cost function the asymmetric tuning could represent.

This set of studies is significant because in optimal feedback control, redirecting the

movement toward the target post-perturbation arises from the recalculation of the optimal
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trajectory at every time point. The consequence is that while the response to the pertur-

bation will demonstrate modulation of the reflex response, it does not account for planning

for perturbation based on risk (such as setting tone). However, when controlling the system

through dynamics, tuning reflexes is an inherent result of the system.



Chapter 5

Concluding Remarks

5.1 Conclusion

The first experiment determined that in a feedback-driven task, humans maintain a

detailed understanding of uncertainty and the form of the cost function. Moreover, results

suggested that humans make predictions of the likelihood of failure, without having experi-

enced this failure first. This is a requisite ability if movement is governed by risk, as there

are failures (such as falling o↵ a cli↵) that one cannot experience first. The importance

of this study is that it established evidence that humans may maintain not just maximum

likelihoods, but entire probability distributions of state and cost of state. The second set of

experiments extended the idea of risk governing movement to the role of risk in modulating

the most fundamental type of movement: the stretch reflex. We found that subjects did

tune their long latency stretch reflex to the overall risk of the environment. Results sug-

gested that humans might do this primarily through adjusting sti↵ness in response to risk.

Another experiment will be performed to examine more closely the function and necessity

of cocontraction for adapting the reflex response to the risk of the environment.

The last experiment will revisit the role of uncertainty in motor control. It will compare

two fundamentally di↵erent types of uncertainty: sensory or current state uncertainty with

motor or future state uncertainty. The purpose of investigating sensory uncertainty is to

determine if certainty equivalence is a valid assumption to make in motor control. If the

system, human movement, proves to behave di↵erently under state uncertainty than when
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the state is certain, then the certainty equivalence property does not hold. This is relevant

because it is a very common, though rarely addressed, assumption.

The unifying aspect of these results is that they represent fundamental characteristics of

human movement that are lacking or absent from current implementations of classical motor

control theories. Any complete model of human movement must exhibit these behaviors

as well. The goal of these studies is not simply to demonstrate human behavior, but to

persuade the reader to consider an alternative perspective on motor control that moves

away from the traditional trajectory-based viewpoint and instead proposes that movement

results from maintaining probability distributions of the probability of failure and cost of

failure.

5.2 Applications and Impact

Building a true model of human movement has many potential benefits. These benefits

mostly fall into one of two categories: exploiting the model to gain insight into motor dis-

eases or implementing this control in artificial systems to replicate the advantages of human

movement.

Human movement is consistently e↵ective in achieving a goal while still avoiding risk

in the environment, and at the same time is robust to perturbations and easily adaptable

to new variations. The field of robotics is still unable to generate movement with these

indispensable characteristics in real time in artificial systems. Additionally, we can use this

knowledge to help replace function in individuals with motor impairment. Prosthetics can

be designed with the specific form of control in mind to reproduce as natural of movement

as possible.

The second class of advantages a deeper understanding of motor control will provide

is greater insight into motor disease. We can compare symptoms of specific motor diseases

with symptoms resulting from breaking the working model to help us understand the origin

of dysfunction. Furthermore, it will help generate new ideas for solutions and treatments



91

once the source of impairment has been identified. Once we understand the system, it will

have many implications in learning and may even transform the way we teach motor actions.
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