The effect of deep brain stimulation on task-related and task-unrelated frequencies of deep brain signals in both contralateral and ipsilateral hemispheres during performing a continuous task: a case study **CHOC** Research **GO BEYOND**

P2.059

University of California, Irvine

R. SOROUSHMOJDEHI¹, J. NATARAJ¹, S. A. SEYYED MOUSAVI¹, T. D. SANGER^{1,2}

¹EECS, Univ. of California Irvine, Irvine, CA; ²Children's Health of Orange County, Orange, CA

- task consist of two distinct components that correspond to voluntary movements, referred task-related frequencies, and as to background movements involuntary and task-unrelated activity, referred to as frequencies.
- DBS is associated with: 1. increase of power of task-related frequency components, 2. change of pattern of abnormal frequency power in basal ganglia and thalamus.
- **Future work:** We are currently using different methods task-unrelated decompose to frequencies to involuntary and background components. Moreover, we are looking into the relation between task-unrelated frequency components found in intracranial recordings and in kinematic and EMG data.

Methods

- **Patient:** A 24 yo male with unknown diagnosis, with dystonic tremor present bilaterally.
- **DBS:** Patient had previous implanted leads in the Ventral Intermediate (VIM), at next implantation 8 temporary depth leads, each consisting of 10 recording microcontacts, were implanted into Globus Pallidus Internus (GPi), Ventral Oralis/Subthalamic Nucleus (VoSTN), (VA) Ventral Anterior nuclei and pedunculopontine nucleus (PPN) [3] in both hemispheres. Stimulation was sent **bilaterally** to VA leads at 90 Hz (with bursts at 5 Hz) and VIM leads at 150 Hz. **Task:** Multiple repetitions of a continuous pointto-point task (Fig. 1) was performed using **right** hand in two conditions: 1. "Off-Stim" and 2. "On-Stim".

Detrend, Low Pass Filter, time-scale all repetitions

to 5s

time

Processed

each

of

Power

Figure

leads

squares

macro

circles

contacts

1,2,3

Nonlinear Filter, Normalize, time-scale all repetitions to

5s

Time [s] Notch Filter, Low pass filter, time-scale all repetitions to

5s, bipolar reference

Notch Filter, Low pass filter, time-scale all repetitions to 5s, bipolar reference

Figure 2. Signal types (columns) and processing steps (rows) for 5 task repetitions. Left to Right: Accelerometer data from right triceps, EMG of right triceps, intracranial data from Left VA in the "Off-Stim" condition, and intracranial data from Left VA in the "On-Stim" condition with bilateral stimulation in VA and VIM. Repetitions were time-scaled to 5 seconds and concatenated together. Power Spectral Density was calculated on all signals, with task-related activity in the frequency domain expected to be 0.2 Hz and its first three harmonics, which are seen in PSDs of all signals.

- **Recording:** 3 types of signals were recorded in both task conditions:
- Intracranial activity through high impedance depth electrodes
- Kinematic data using the accelerometer sensors
- 3. Hand muscle activity using electromyography (EMG) sensors

Figure 1. Point-to-point Each repetition is task. from big green going

Figure 4. PSD Comparison of recording VA-L average (left panel) and VA-R average (right panel) when task was performed with right hand. The power of task-related frequencies increases during DBS compared to that of the non-stimulated, more in contralateral side to the task.

	GPi_L				PPN_L				VoSTN_L				VA_L			
Frequency range (Hz)	Task – related	0 - 4	4 - 13	13 - 30	Task – related	0 - 4	4 - 13	13 - 30	Task – related	0 - 4	4 - 13	13 - 30	Task – related	0 - 4	4 - 13	13 - 30
Off-Stim Power	6	898	764	996	5	879	1190	896	17	993	601	991	9.86	702	596	1020
On-Stim Power	11	1425	759	923	20	1332	782	836	70	1847	655	792	20.61	1303	875	853

Table 1. Power comparison on-stim vs off-stim of task-related frequency (~0.2 Hz) and task-unrelated frequencies (frequencies up to 30 Hz excluding) task-related frequency), in all regions, where recording contacts are averaged. The power of task-related frequencies increases during DBS compared to that of the non-stimulated, in all regions. The pattern of power of task-unrelated frequencies changes during DBS compared to that of the nonstimulated, showing a decrease in higher frequencies but increase in lower ones. Task-unrelated frequencies can be associated with abnormal motions caused by dystonia, tremor and background brain activity.

REFERENCES

[1] Lin, P.T. and Hallett, M., 2009. The pathophysiology of focal hand dystonia. Journal of Hand Therapy, 22(2), pp.109-114. Krauss, J.K., Yianni, J., Loher, T.J. and Aziz, T.Z., 2004. Deep brain stimulation for dystonia. Journal of Clinical [2] Neurophysiology, 21(1), pp.18-30.

[3] Lunardini, F., Maggioni, S., Casellato, C., Bertucco, M., Pedrocchi, A.L. and Sanger, T.D., 2015. Increased task-uncorrelated muscle activity in childhood dystonia. Journal of NeuroEngineering and Rehabilitation, 12(1), pp.1-10.

[4] Sanger, T.D., Liker, M., Arguelles, E., Deshpande, R., Maskooki, A., Ferman, D., Tongol, A. and Robison, A., 2018. Pediatric deep brain stimulation using awake recording and stimulation for target selection in an inpatient neuromodulation monitoring unit. Brain Sciences, 8(7), p.135.

CONNECT WITH ME!

Rahil Soroushmojdehi Electrical Engineering, PhD Student University of California, Irvine rsoroush@uci.edu

